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ABSTRACT 

This dissertation work centers on the development of a minimum-input biodynamical 

model for multi-fingered hand movements. It consists of three coherent, progressively 

more in-depth studies. 

The first study proposes a two-stage computational framework for bio-dynamic 

modeling of human movement. The framework decouples the conventional forward 

dynamic modeling process into two stages: in the first stage, two-component "agonist-

antagonist" torque actuators under testable parametric control drive the forward dynamics, 

and the parameters are identified by an optimization-based procedure of tracking both 

kinematics and kinetics; the second stage completes the mapping from the muscle-tendon 

forces to the predicted joint torques. An empirical test using multi-finger grasping 

movement data demonstrates that the proposed framework allows the measured 

kinematics and kinetics to be faithfully and efficiently reproduced. 

In the second study, the above modeling framework is applied to a hypothesis-driven 

comparative analysis of two different multi-fingered hand movements: cylinder-grasping 

and individuated flexion of the index finger ('enslaving'). The hypothesis is that a 

common underlying mechanism is used to control the two different multi-fingered 

movements. This hypothesis is supported by the findings that the two types of 

movement can be reproduced by the same biodynamic model with a unified control 

mechanism and that the numbers of invariants remain consistent in the joint and muscle-

tendon dynamics. The results also show that the number of invariants in the joint 

dynamics is smaller than that in the muscle-tendon dynamics and the mean correlation 

coefficient in the joint dynamics is larger than that in the muscle-tendon dynamics, 

suggesting hierarchical sources for dimensionality reduction. This study thus provides 

evidence to support the notion that different hyper-redundant multi-fingered movement 

acts can be controlled by a reduced number of input commands through a common 

architecture. 

The third study investigates the effect of the model parameter variability on the 

muscle-tendon force coordination and clarifies the roles of the flexors in finger 

movement production and control. The premise is that accommodating variability of 
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musculoskeletal parameters in the model would result in better population-based 

predictions of the muscle-tendon forces and unravel more invariant relationships in these 

forces. A probabilistic biodynamic model is constructed to estimate the muscle-tendon 

forces and shows that both flexors of the index finger contribute to sustaining the 

movement and the flexor digitorum superficialis (FDS) muscle is not necessarily silent. 

The findings, contrary to what previous deterministic models have shown but in 

agreement with experimental measurements, clarify the controversy surrounding the roles 

of the flexors in finger movement dynamics. 

Taken together, these studies build a unique biomechanical science foundation for a 

minimum-input biodynamical model that identifies important applications, including 

design of next-generation hand prostheses or hand rehabilitation strategies, and 

advancement of digital human simulation and virtual reality technologies. 

i i i 
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CHAPTERI 

INTRODUCTION 

1.1 Significance and Research Objectives 

Dexterity of the human hand is a fundamental attribute that enables one to touch, 

press, or manipulate objects, and to convey gestic information. It is afforded by 

coordinated movements of a complex and redundant biomechanical system consisting of 

27 bones, 39 muscles, and over 30 degrees of freedom (DOF's), possessed mostly by the 

fingers (Tubiana, 1981). The fingers or digits are so vital that amputation at the 

metacarpophalangeal (MCP) joint is considered to be 54% impairment of an entire person 

(Engelberg, 1988). The number of possible motion combinations that can be created by 

the hand biomechanical system is overwhelming. For example, merely considering the 

sign of the motion (e.g., +flexion/-extension) at each of the DOF's embedded in the hand 

would yield millions of possibilities (Soechting and Flanders, 1997). Yet, normal 

individuals are able to control this complex system, with amazing ease and efficiency, in 

producing a vast array of deft, purposeful, and concerted hand movement acts. 

The complexity concomitant of the dexterity of hand biomechanical system presents a 

paradox in several frontiers of biomedical engineering research and application. First is 

the new emerging area of digital human simulation which identifies clinical applications 

such as computer-assisted or virtual-reality-based surgeries. Computer simulations 

embedded with biologically realistic musculoskeletal representations can assist in 

orthopedic surgeries, particularly in the design and planning stage, by visualizing the 

biomechanical consequences of bone reconstruction, joint replacement, or muscle-tendon 

reattachment (Delp and Loan, 2000). The complexity associated with 

neuromusculoskeletal biodynamic modeling has been the greatest impediment in the 

quest for realistic ("human-like") and computationally efficient ("real-time") 

simulations—an inherent trade-off between physical realism and computational 

efficiency is hard to overcome. Naturalistic hand motion simulation models featuring a 

reasonable level of dexterity are currently lacking. In the meantime, however, hand-

related neurological or musculoskeletal disorders (e.g., carpal tunnel syndrome) are 

increasingly prevalent and becoming a major source of disability and morbidity. 

Second is the area of hand neuro-prosthetics. It was estimated in a 1996 report 
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(LePlante and Carlson, 1996) that there were more than a hundred thousand people with 

upper extremity amputations in US alone. The number has been growing, and 

significantly more rapidly since the war in Iraq began. Hand prosthesis researchers face 

the dilemma of coping with two conflicting goals: to maximize the functional 

restoration—more DOF's, more prehensile patterns for artificial hands, and at the same 

time to minimize or strategically simplify the control with limited residual neuron- or 

myo-electrical signal sources (Weir, 2003). While considerable progress has been made 

in multifunctional hand prosthetic mechanism design, still missing is an effective and 

efficient control strategy that can orchestrate multiple DOF's to produce dexterous and 

naturalistic finger movements (Weir, 2003; Afshar and Matsuoka, 2004; Pylatiuk et al, 

2004). A third area where a similar challenge persists is the development of 

exoskeletons and robots resembling or compatible with hand movements for functional 

rehabilitation or augmentation. To use a minimum set of actuators or input commands 

to produce reasonably realistic hand/finger movements remains a tantalizing goal for 

research and device development. 

One of the most fundamental problems underlying the challenge is the lack of a 

model that not only represents the complex hand biodynamic system but also emulates 

naturalistic multi-finger movement control in a computationally efficient manner. Such 

a model can be readily implemented as biomimetic control algorithms for devices that 

restore or augment hand function, and can serve as the computational engine that drives 

digital simulation of human movement. It may also be translated in guidelines for 

improved, more targeted muscle-tendon therapy in hand rehabilitation. 

Therefore, the dissertation seeks to pursue two general scientific objectives: (1) to 

develop a biodynamic model capable of simulating multi-finger movements in a 

naturalistic and computationally viable manner; and (2) from data-supported model 

testing, to gain quantitative understanding of the dynamic coordination and coupling 

mechanisms that enable efficient production and control of multi-fingered hand 

movements. 

These objectives are embodied by the following specific aims: 

2 
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1) To develop a multi-finger biodynamic model that is biomechanically realistic, 

computationally viable, and amenable to empirical test at the system, joint, and 

musculo-tendon levels. 

We propose a novel two-stage modeling framework: (1) a parametric-controlled 

torque-driven forward dynamic modeling stage amenable to hypothesis testing, and (2) a 

musculo-tendon force to joint torque mapping stage. The framework has an open 

architecture to facilitate exploring different hypothesized control strategies in search for 

one resulting in model-prediction best matching experimental data both kinematically and 

kinetically. The model is tested using an established normative database of grasping 

movement and is validated with the existing muscle-tendon force data available in the 

literature. 

2) To apply the above modeling framework to examine the coordination and 

coupling mechanisms (the "invariants") underlying two functionally distinct 

multi-fingered hand movements. 

We compare two different types of multi-fingered hand movement, functionally less 

variant (across fingers) grasping and more variant 'enslaving' movements based on an 

experimental database. We analyze the model-based solutions at the system, joint, and 

muscle-tendon levels, and identify and quantify the invariants 

3) To develop a probabilistic model mapping the muscle/tendon forces to joint 

torque and kinematics profiles and incorporating stochasticity in musculo-

tendon geometry to advance our understanding of muscle-tendon force in the 

finger movement and control. 

We propose a probabilistic biodynamic model to predict the muscle-tendon forces 

during index finger flexions. We incorporate stochasticity into musculoskeletal 

parameters of a biodynamical model, and use a Monte-Carlo method to capture the 

variability of model parameters such as physiological cross sectional areas (PCSA), 

moment arms, passive torques, and anthropometrical measures by replacing the 

"average" representations with probabilistic distributions. We analyze the population-

based predictions of the flexor forces and achieve better understanding of the role of 

flexors during the finger movement. 

3 
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1.2 Thesis Organization 

This dissertation consists of five chapters including three full-length manuscripts 

(Chapters II-IV) along with this introductory chapter and a concluding chapter. The 

three manuscripts present three coherent, progressively more in-depth studies. 

Chapter II addresses the first specific aim and presents the development and 

validation of a computational framework for bio-dynamic modeling of human movement 

and its application to multi-fingered hand movement. Chapter III addresses the second 

specific aim. It presents a hypothesis-driven comparative analysis of two different 

multi-fingered hand movements: cylinder-grasping and individuated flexion of the index 

finger ('enslaving'), based on the modeling framework presented in Chapter II. We 

analyze the inter-digit dynamic couplings and coordination patterns across digits 2-5 from 

three levels: system control, joint and muscle-tendon dynamics. Chapter IV addresses 

the last specific aim. It describes a probabilistic biodynamic model for estimating the 

muscle-tendon forces and elucidating the roles of the flexors in finger movement 

production and control. Finally, Chapter V concludes the dissertation by summarizing 

the main contributions made by this work and recommending a few directions for future 

research. 
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CHAPTER II 

A NOVEL TWO-STAGE FRAMEWORK FOR MUSCULOSKELETAL 

DYNAMIC MODELING: AN APPLICATION TO MULTI-FINGERED HAND 

MOVEMENT 

2.1 Abstract 

In this chapter, we present a new computational framework for bio-dynamic modeling 

of human movement. The framework decouples the conventional dynamic modeling 

process into two stages: in the first stage, two-component "agonist-antagonist" torque 

actuators under hypothesized and testable parametric control drive the forward dynamics, 

and parameters are identified by tracking both kinematics and kinetics; the second stage 

completes the mapping from the muscle-tendon forces to the predicted joint torques. An 

empirical test using multi-finger grasping movement data was conducted to illustrate the 

application of the proposed framework, and showed that the model reproduced the 

measurement accurately in both kinematics and kinetics. The torque components 

exhibited consistent spatial-temporal patterns across joints, digits, and subjects. The 

muscle-tendon forces computed based on the model-predicted kinematics and kinetics 

had the peak values within the same order of magnitude as in vivo data reported in the 

literature. The potential to predict was also demonstrated as we applied the control 

parameters of one subject to another and achieved close matches. 

2.2 Introduction 

Biodynamic models are powerful means for describing the production, control, and 

consequences of a biological movement. Numerous models have been created to study, 

explain, or predict various phenomena associated with human movements (cf. review by 

(Erdemir et al., 2007)). These models have provided valuable insights into the causal-

effect relationships between external factors, internal mechanisms of the neuro-musculo-

skeletal system and outcomes of human movements at different levels. They also have 

transformed conventional applications and enabled emerging applications such as 

rehabilitation (Karlsson and Peterson, 1992; Happee, 1994; Neptune, 2000; Shelburne 

and Pandy, 2002; Raikova et al., 2005; Tanaka et al., 2007), product design (Rasmussen 

6 
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et al., 2002; Lin et al., 2004; Chang and Wang, 2007), computer-assisted surgeries (Delp 

and Loan, 2000; Blemker et al., 2007), and ergonomics (Zhang, 2001). 

Despite its overall success as a tool for studying the neuromusculoskeletal system, 

biodynamic modeling has been plagued by two major limitations. One major limitation 

is the inherent trade-off between model level of detail and computational tractability 

(Zhang and Chaffin, 2006). The human musculoskeletal system possesses more number 

of degrees of freedom (DOF) than what is mechanically necessary to produce a 

movement and more number of muscles than number of degrees of freedom being 

activated. The system is also highly nonlinear and often time-dependent. While 

simple biomechanical models may not provide adequate accuracy and sufficient insight 

for many of the contemporary applications, the three characteristics of a musculoskeletal 

dynamic system—redundancy, high nonlinearity, and time-dependence—can translate 

into significant computational complexity in modeling a system with even a modest level 

of realism. As a model evolves from oversimplified to realistic, static to dynamic, small 

to large scale, the variables involved in the modeling multiply, and the associated 

computational complexity increases exponentially—this is referred to as the 'curse of 

dimensionality' (Bellman, 1957). The complexity has been the greatest impediment in 

generating models and simulations that are both computationally efficient and 

biomechanically realistic. For example, it took 3.5 hours of CPU time to complete a 3-

second arm motion simulation for a dynamic model consisting of 5 DOFs and 30 muscles 

(Yamaguchi et al., 1995),. Anderson and Pandy (Anderson and Pandy, 2001a) showed 

that simulation of a single gait cycle cost about 10,000 hours of CPU time to converge a 

solution using a human walking model that possessed 23 DOFs and 54 muscles and 810 

control variables. More recent studies (Menegaldo et al., 2003; 2006) showed that 

simulation of raising-up movements using a 3-link planar model with 10 equivalent 

muscles/tendons may take 2-14 days. Such tremendous computational cost hampers the 

use of these models in applications requiring real-time movement animation or in model-

based human movement studies involving a sizable subject pool. Use of parametric 

stereotyped control strategies along with torque-driven forward dynamics (Lee and Zhang, 

2007) has demonstrated some promise for computationally more tractable simulation but 

at the expense of muscular details and insights. It appears that both stereotyped, testable 

7 
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control strategies and anatomical details have to be incorporated into a model in order to 

achieve computational viability and realism in system as well as musculo-tendon 

dynamics. 

Another major limitation is the difficulty to reconcile the inverse and forward 

solutions. The traditional approaches to biodynamic modeling of human movement can 

be classified as an inverse and a forward dynamics approach. A forward dynamics or 

forward solution model arguably represents the real sequence of events in movement 

production: from a task goal, to a varying neural drive, to muscle forces, to time-varying 

joint torques, to the acceleration (or deceleration) of the body segments, and then to 

movement (Winter, 1990). An inverse dynamics approach works in a reverse logic: it 

starts from observed movement kinematics, such as position, velocity and acceleration of 

body segments, to joint kinetics (torque, muscle forces), to neural signal or control. 

Although in theory both are able to estimate the intermediate state variables (e.g., joint 

kinetics) during movements (Zajac et al., 2002; 2003), solutions from the two approaches 

may depart from each other considerably (Lim et al., 2003; Buchanan et al., 2005; 

Menegaldo et al., 2006). Ideally, given the inverse solutions as the input of a forward 

simulation, the output should replicate the input of the inverse solution. Such, 

nevertheless, is often not the case. For example, it was shown that for a perfect inverted 

pendulum model, using the calculated moments from an inverse solution as input in a 

forward simulation without any correction usually does not result in the observed 

kinematics (Risher et al., 1997)—a phenomenon called inverse dynamics simulation 

failure (Zajac, 1993). 

The difference between inverse and forward solutions therefore provokes a challenge 

in modeling or model-based analysis: which solution should be used? The difference, 

and not knowing there is a difference, could lead to divergence in interpreting the 

observables and understanding the underlying mechanisms. For example, Prilutsky 

(Prilutsky, 2000) suggested that muscle coordination features could be predicted by 

minimizing muscle fatigue based on the inverse dynamics approach, which is contrary to 

the result from the forward dynamics approach (Kautz et al., 2000). Therefore, a 

unifying musculoskeletal dynamic modeling framework to provide reconciled inverse 

and forward solutions would be critical for gaining more complete and accurate 

8 
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understanding of human movement. 

In this work, we propose a two-stage computational framework for bio-dynamic 

modeling of human movement in an attempt to alleviate or even circumvent the above 

described two major limitations. The framework is designed to be capable of 

reproducing realistic multi-joint movements while avoiding solving at once a multi-input-

multi-out forward dynamics problem embedded with both kinematics redundancy (Gielen 

et al., 1995) and muscle redundancy (Prilutsky and Zatsiorsky, 2002). We use the 

modeling of multi-fingered hand movement to illustrate the application of the proposed 

framework. To our knowledge, no true forward dynamic model exists that can predict 

both kinetics and kinematics accurately. 

The remainder of the chapter is organized as follows: Section II describes the general 

concept and structure of the two-stage modeling framework, followed by an illustrative 

application to the modeling of multi-fingered hand movement. In Section III, the results 

from the application as an empirical test of the framework are presented. Section IV 

recapitulates and discusses the merits of proposed framework, and analyzes the 

limitations of our work. Section V ends with some concluding remarks. 

2.3 Methods 

A. The two-stage modeling framework 

Stage I 

Hypothesed 

Control 
Strategies 

Stage II 

' ' < 
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Fig. 2.1 The proposed two-stage biodynamical modeling framework. In Stage I, a 

control strategy is hypothesized, which once parameterized forms the system control 
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mechanism. A system identification process determines the control parameters such 

that the forward-simulated kinematics and kinetics best match the measured kinematics 

( 6*) and measurement-derived torque (T*). In Stage II, the muscle-tendon forces (F) 

are determined from the predicted torques (7), the process of which is modulated by the 

movement-dependent musculotendon geometry. 

Fig. 2.1 illustrates the proposed two-stage modeling framework. In the first 

stage, a biodynamic system is modeled without the muscle-tendon components. 

Torque-driven forward dynamics and system identification are blended to achieve 

computational tractability and efficiency. A stereotyped control strategy in parametric 

form is first hypothesized, which controls the joint torque actuation. The controlled 

torques (7) drive the skeletal dynamics such that not only the predicted kinematics best 

match the measured ( 9*, 6) but the inversely measurement-derived torques (T*) would 

also be in close agreement with the controlled. The system identification to ascertain 

the control parameters resulting in the best matches in kinetics and kinematics is also a 

process of testing a hypothesis: whether the model can track the measured kinetics and 

kinematics accurately is indicative of the validity or plausibility of a strategy. In the 

second stage, the mapping from muscle-tendon forces to the joint torques is 

accomplished. Typically, a muscle redundancy problem is inherent in this stage: there 

are an infinite number of muscle-tendon force combinations that can produce the same 

joint torque. Optimization with various forms of cost function or performance criterion, 

depending on the nature or the goal of a movement (Seireg and Arvikar, 1975; Dul et al., 

1984; van der Helm, 1994; Brook et al., 1995), can be used to solve the redundancy. 

By decoupling the entire dynamic modeling process into two stages, the proposed 

framework decomposes an otherwise computationally costly or even intractable problem 

into two simpler problems while ensuring the key intermediate connecting variables (here 

the joint torques) are trustworthy. Solutions to the two problems can render forward 

dynamic simulation efficiently and preserve the details and possible insights at the 

musculo-tendon junction. In addition, the proposed framework offers an open 

architecture allowing various hypotheses to be formulated and tested at the motor control 
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level as well as the musculo-tendon force level. 

B. Stage I: parametric-controlled torque-driven forward dynamic modeling 

The dynamics of a general 3-segment, 3-DOF linkage system without considering 

gravity at time t can be represented by the following equations of motion: 

M(0(t))0(t) = V{0{t), 0(t)) + t(f), (2.1) 

where 0(t)eWxl, 0(t) e 9t3xl, 0{t) e 9*3xl are the angle, angular velocity, and 

angular acceleration vectors, M(0(t)) e 9t3x3 is a positive definite mass matrix, 

V(0(t),0(t))e 9t3xlis the centrifugal (square of joint velocity) and Coriolis force, 

t(t) E 9?3xl is the torque vector at the joints. In the first stage of our modeling 

framework, we hypothesize that the torque actuator of each joint has two components: 

one component fflexor(0 represents the flexor action and the other TatSmsm(t) represents 

the extensor action at time t. Both torque actuators are controlled by proportional-

derivative (PD) controllers and modulated by distribution functions that emulate muscle 

contractile mechanics. This novel stereotyped control scheme can be described by the 

following equations. 

*(0 = W ( 0 + rextensor(0 (2.2) 

W ( 0 = -l(t)[KZexorA0(t) + KiXO!A0(t)] (2.3) 

^^^) = -^)[K^oA0(t) + KitemorA0(t)] (2.4) 

q(t)= l.O-a.O-cy+^VK"'' (2.5) 

s(t)= - A _ / s - ' = ^ Q /A-i (2.6) 
B(/?s,l) ftA-A 

Jo 

where A 0{t) e 9?3xl, A 0(t) e 9t3xl are the angle and angular velocity differences 

between current time t and the ending time tend; Kf^ e 3l3xl, ^ t ensor e 5R3X1, and 

f̂lexore ^3xl > - ^ t e n s o r e ^3xl arc t n e associated proportional and derivative gains; q(t) is a 

gamma distribution function; s(t) is a beta distribution function; ccq is the scale factor of 

the gamma distribution, and /?s is the shape parameter of the beta distribution function. 

Note that the parameters, K ^ K ^ , Kd
nex0T, ^xtensor, a,, and fl aretime-
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independent. 

The hypothesized two-component torque actuator originated from the observation 

that the agonist and antagonist muscles exhibit different spatial-temporal patterns as 

recorded by electromyography (EMG) during single-joint movements (Hallett et al., 

1975; Hallett and Marsden, 1979; Hannaford and Stark, 1985; Schmidt et al., 1988; 

Sherwood et al., 1988; Almeida et al., 1995; Gottlieb, 1998; Irlbacher et al., 2006). It 

has been found that the EMG activity of single-joint movements consists of two or three 

phases. The first one is the initial agonist burst, which starts the movement and 

accelerates the segment towards its target position. During this phase, the EMG activity 

of agonist muscles first increases quickly. After reaching its peak, it decreases gradually. 

The second phase is the antagonist burst, which decelerates the segment. In this phase, 

the EMG activity of antagonist muscles exhibits similar envelop as that of agonist 

muscles in the first phase but has a delay of several hundred milliseconds, referred to as 

the antagonist latency (Gottlieb et al., 1989). A possible third phase is the second 

agonist burst, which could prevent possible oscillations of the segment and lock it on the 

target, which may not be observable in all single-joint movements. The pattern of EMG 

activities usually has the best correlation with the generation of muscle torques 

(Lacquaniti and Soechting, 1986; Marconi et al., 2006), supporting the use of an EMG-

pattern-based torque-driven model to produce human movements. Our two-component 

'agonist-antagonist' torque actuators are intended to capture the bi-phasic muscle co-

contraction dynamics. The antagonist latency was implemented using two distribution 

functions with different temporal characteristics. By doing so, smooth net torque profile 

can be obtained since the onsets of the two torque components can be chosen as the same, 

and two torque actuators can be set to start simultaneously. These two distributions are 

also effective in simulating the kinetics profile during initial stage of the joint movement. 

The function of the second agonist burst—that is, to decelerate the motion, is jointly 

implemented by the flexor and extensor torque components. 

With the proposed control scheme, an optimization problem to identify the system 

parameters by tracking both kinematics and kinetics can be formulated as follows: 

d minimize £~ (0{t)-e\t)fdt (2.7) 
{Kflexor '^flexor ^extensor ^extensor >ap >Ps I 
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subject to Af (0(0)0(0 = V(0(t), 0(0) + r(t) 

7 ( 0 = f̂lexor ( 0 + "̂extensor (0 

W ) = -q(t)[K^otA0(t) + <xorA0(O] 

W.C0 = -*(OK»„A0(O + *L»M0] 

-Lr-(T(o-T*(0)2A 
max 

^-£"°(T*(0)2A 
<to/ 

where 6{t), 0(f), and 0(t) are the model-predicted angle, angular velocity, and 

angular acceleration vector at time t; 0* (t) is the measured kinematics; r(t) is the torque 

vector at time t; andrflexor(0, Textms0I (0 are m e flexor and extensor torque components; 

t*(t) is the torque derived using inverse dynamics at time t; tol is the tolerance expressed 

as the normalized mean-square difference between measured and model-predicted torque 

profiles. 

C. Stage II: mapping of muscle-tendon forces to joint torques 

Once the joint torque r(t) at time t is known and ensured to be physiologically 

realistic, the muscle force can be estimated as follows. Assume that n muscles are 

involved in the movement of the 3-segment 3-DOF system, the moment arm values at 

time t is M(i) = [w # (0] 6 9?3x" where mjk (t) is moment arm of muscle/tendon force k 

with respect to jointy at time t, the moment equilibrium conditions can be described by 

the equation: 

T(0=M(0-F(0 (2.8) 

where F(t) = [Fk ] e 9T*1 is muscle-tendon force vector at time t and Fk is a muscle-

tendon force. For each time point, usually the number of muscles is greater than the 

number of equations, or number of degrees of freedom to be activated, which is referred 

to as muscle redundancy. This muscle redundancy problem can be solved using linear 

or nonlinear optimization techniques by minimizing an objective function J(F(t)) 

(Erdemir et al., 2007), which, depending on the nature or the goal of a movement, could 

be muscle force, muscle stress, intensity-compression, muscle activation, and etc. A 

13 



www.manaraa.com

general formulation is as follows. 

minimize J(F(t)) (2.9) 

subject to M(t)-F(t) = T(t) 

g(F(t),0(t)) = O 

h{F{t),9(t))^ 

where f j ^ and Fada are the maximum and minim um physiological forces; g and h 

are the additional constraints depending on the anatomical structure of the joint under 

investigation and/or the muscle dynamics. 

D. An application to modeling of multi-fingered hand movement 

The above modeling framework was tested by applying it to multi-finger grasp 

movement data. Data for 19 trials performed by 19 subjects were selected from a 

database previously established in our laboratory. One major selection criterion was 

that the movement must be 'well-coordinated', as characterized by the bell-shaped joint 

velocity and double-peaked joint acceleration profiles. These trials satisfied this 

criterion without significant missing data (due to surface marker drop-outs in 

measurement) were used to test this modeling framework. The multi-finger kinematics 

were measured and derived using a well-published experimental and processing protocol 

(Zhang et al., 2003; Lee and Zhang, 2005; Lee and Zhang, 2007). Reflective markers 

were placed on the dorsum of the subjects' right hands and the three-dimensional (3D) 

marker coordinates were recorded by a five-camera Vicon 250 system (Oxford Metrics, 

UK) at a sampling frequency of 120 Hz. The angular profiles were then derived from 

the marker coordinates. 

The finger model in this application represents each of digits 2-5 as an open chain of 

three segments-distal phanlanx (DP), middle phanlanx (MP), and proxiamai phalanx (PP), 

connected by three 1-DOF revolute joints—distal interphalangeal (DIP), proximal 

interphalangeal (PIP) and metacarpophalangeal (MCP) joints (see Fig. 2.2(a)). The 

segments are modeled as conical cylinders with a density of l.lg/cm3 (Dempster, 1955) 

and the length and thickness of each segment were modeled as functions of the hand 

length (Lee and Zhang, 2007). It was assumed that all the joints (DIP, PIP, and MCP) of 
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digits 2-5 were controlled by the two-component torque actuator proposed in the previous 

section. 

The tendons and intrinsic muscles crossing these joints as each of the four fingers on 

the three joints considered in the model are listed in Table 2.1. For these four fingers 

(see Fig. 2.2(b)), the flexor digitorum profundus (FDP) and flexor digitorum superficialis 

(FDS) are the flexors of the fingers, inserting at the bases of DP and MP, respectively 

(Brand and Hollister, 1999; Gonzalez et al., 2005). The extensor mechanism itself is an 

intricate network of tendons connecting muscle tendons and tendon bands: the extensor 

digitorum communis (EDC) trifurcates over PP into extensor slip (ES) and two lateral 

bands (LB and UB); the former inserts onto the MP while the latter two re-connect and 

merge into the terminal tensor (TE) inserting onto DP. Besides the EDC, the extensor 

indicis proprius (EIP) inserts on the ulnar/radial side of EDC in the index finger and the 

extensor digiti quinti (EDQ) is on the ulnar side of the EDC in the little finger. Of note 

is that we do not consider the scenario that the EDC has no tendon inserting into the little 

finger in the current work. The intrinsic muscles add further complexity to the system: 

the lumbrical (LUM) muscle is the only muscle in the human body that originates from a 

tendon (of FDP) and inserts on a tendon (the lateral bands of extensor), both of which 

themselves span multiple joints; the interosseous muscles, radial or ulnar, originate from 

the lateral aspects of the MCP and insert on either side of the extensor hood. The little 

finger does not have an interosseous muscle on its ulnar side. Instead, the adductor 

digiti quinti (ADQ) muscle serves for abducting the finger. It is assumed that ADQ has 

the same properties as the UI. Note that two 'virtual' muscles were introduced into the 

middle and fingers (Table 2.1) to allow the model to be generic for all the digits. 
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Table 2.1 

Tendons and intrinsic muscles of fingers 

Joint 

DIP 

PIP 

MCP 

Index (Dig 2) 

l.FDP 

3.TE 

l.FDP 

2.FDS 

4.ES 

5.UB 

6.RB 

l.FDP 

2.FDS 

7.LUM 

8.RI 

9.UI 

10. EDC 

l l .EIP 

Middle (Dig 3) 

1. FDP 

3. TE 

1. FDP 

2. FDS 

4. ES 

5. UB 

6. RB 

1. FDP 

2. FDS 

7. LUM 

8. RI 

9. UI 

10. EDC 

11. (virtual) 

Ring (Dig 4) 

1. FDP 

3. TE 

1. FDP 

2. FDS 

4. ES 

5. UB 

6. RB 

1. FDP 

2. FDS 

7. LUM 

8. RI 

9. UI 

10. EDC 

11. (virtual) 

Little (Dig 5) 

1. FDP 

3. TE 

1. FDP 

2. FDS 

4. ES 

5. UB 

6. RB 

1. FDP 

2. FDS 

7. LUM 

8. RI 

9. ADQ 

10. EDC 

l l .EDQ 
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Fig. 2.2. (a) a 3-segment linkage model without musculotendon components 
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DIP: Distal Phalangeal 
PIP: Proximal Phalangeal 
MCP: Metacarpophalangeal 

r»m i t<a r~~-~ EDC: Extensor Digitorum Cummunis 
DIP / L7¥ / FHP

 6 

ES: Extensor Slip 
FDP: Flexor Digitorum Profundus 
FDS: Flexor Digitorum Superficialis 
LUM: Lumbrical 
RI: Radial Interosseous 
TE: Terminal Extensor 

Fig. 2.2 (b) muscles and tendons added to the model 

Fig. 2.2. The finger models in two development stages: (a) a torque-driven 3-segment, 3-

DOF linkage model without musculotendon components; (b) muscles and tendons added 

to the model (RB, UB ,UI, ADQ, EIP and EDQ are not shown). 

Thus for each individual finger, the moment equilibrium conditions can be described 

by the following equation: 

(2.10) T = MF 

where 

* = fo ^ T3f, F = [FiF2 Fj,M = 

mn 0 mxl 

* 3 1 W 3 2 w37 w38 m39 mxi0 itij u 

mjk is moment arm of muscle/tendon force k with respect to joint j . The moment 

arms of the index finger are estimated by the method proposed by Brook et al. (1995). 

The moment arms of the remaining fingers are scaled by the ratios of respective finger 
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lengths to the index finger length. It is also assumed that no abduction-adduction occurs 

in the MCP joints during primarily flexion-extension finger movments. Therefore, we 

have another moment equilibrium equation: 

MAF = 0 (2.11) 

where M4=[w41 m42 0 0 0 0 m47 m48 w49 w410 >«411] and W4k is the 

moment arm of muscle-tendon force k with respect to the MCP joint for abduction and 

adduction movements. 

There are also force constraint equations as described by Brook et al. (1995): 

^ZRBF^ XVBFS (2-12) 

F4=(l-aVI)F9 + (l-aLUM)F7 + (l-2aLE)F10 + K(eUB + eRB) (2.13) 

F5=cxLE(Fl0+Fn) + aLUMFn -Kem (2.14) 

where XRB sn&Xm are two cosine terms, which account for the convergence angles 

of the RB and UB onto the TE; f^and eUB account for the relative motion between the 

ES and the RB and UB, respectively. The a coefficients are additional unknowns, 

which are determined in the subsequent nonlinear optimization. K is the tendon 

elasticity coefficient. Given that the moment arm values in M are known for each 

individual finger, the moment equilibrium system contains 11 unknown muscle/tendon 

forces and 3 unknown a coefficients in 8 equations. Note that F, x and M are all 

time-dependent. To estimate the muscle force, a nonlinear optimization technique is 

employed with the objective function of minimizing the muscle stress which is defined as 

the quotient of the muscle force divided by its physiological cross sectional area (PCSA). 

The objective function is defined as: 

It is assumed that the same muscles of the four fingers have identical PCSA values 

presented in Chao and An (1978). The PCSA's of the three virtual muscles are set to be 

a very small but nonzero number to ensure that the virtual muscles are 'silent'. The 

muscle stress would be extremely large and be out of the optimal value if the virtual 

muscles underwent any force values, given that the objective function in the model is the 
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muscle stress. The model was implemented using MATLAB® programs (The 

Math Works, Boston, MA) and the MATLAB optimization toolbox. 

2.3 Results 

With the two-stage modeling framework, the model-predicted grasping movement 

was successfully replicating the experimental kinetics (see Fig. 2.3) and kinematics (see 

Fig. 2.4 and 2.5). In contrast, directly applying the torque inverse solutions via 

conventional forward simulation (inverse simulation) based on the 4th-order Runge-Kutta 

method caused inverse dynamics simulation failure (see Fig. 2.6). The root-mean-

square error (RMSE) values for the pair-wise difference between the model-predicted and 

measured angular profile for each joint ranged from 1.56° to 3.73° (see Table 2.2). The 

grand mean of the RMSE values across 19 trials was 2.32°. 

The flexor and extensor torque components have consistent spatial-temporal patterns 

across joints, digits (see Fig. 2.7), and subjects (not shown here). These patterns 

resembled the EMG patterns of the agonist and antagonist muscles observed during 

single-joint movements. The model also demonstrated its potential for prediction, as we 

applied the control parameters of one subject to another and achieved close matches 

(Figure 2.8). 

Table 2.2 

Mean and standard deviation of RMSE values (unit: °) 

Joint 

DIP 

PIP 

MCP 

Digit 

2 

2.86(0.87) 

1.93(1.04) 

1.56(0.57) 

3 

3.73(0.66) 

2.21(1.01) 

1.65(0.69) 

4 

3.16(0.99) 

2.12(1.06) 

1.64(0.61) 

5 

2.76(1.08) 

1.60(0.78) 

1.48(0.75) 
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Index Little 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Time (Sec) 

• Measured Predicted 

Fig. 2.3. Model-predicted (solid line) and inversely (measurement) derived net joint 

torques (dots) at 12 joints as functions of time t for a representative case. Note that the 

selected measured data points (dots) are sampled at 12Hz to better discriminate the 

model-prediction and measurement. 
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0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 
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• Measured Predicted 

Fig. 2.4. Model-predicted and measured joint kinematics at 12 joints as functions of time 

t for the same representative case presented in Fig. 2.3. The RMSE values ranged from 

0.72° to 3.60°, which are comparable to the statistical median of RMSEs across all cases. 
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Index Middle 

"J? 

-0.02 0 0.02 0.04 0.06 0.08 0.1 

Ring Little 

-0.02 0 0.02 0.04 0.06 0.08 

Predicted • Measured 

Fig. 2.5. Model-predicted and measured finger trajectories in flexion-extension planes of 

digits 2-5 for the same representative case presented in Fig. 2.3. The three-segment 

linkage (thick solid line) represents the initial finger posture with the origin being the 

MCP joint. 
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Index Middle Ring Little 

"5b 
a 
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60 

OH 

"5b 
a 
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U 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Time (Sec) 

• Experimental Model-predicted 

Fig. 2.6. Joint kinematics predicted by a forward simulation using a conventional inverse 

dynamic solution based on the 4th-order Runge-Kutta method (solid line) and measured 

kinematics for the same representative case presented in Fig.2.3. The RMSE values 

ranged from 1.3° to 5.50°. 
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Index Middle 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Time (Sec) 
Extensor Torque Component Flexor Torque Component 

Fig. 2.7. Torque components across joints and digits for the same representative case 

presented in Fig. 2.3. The flexor (red line) and extensor (black) torque components 

demonstrated consistent spatial-temporal patterns across joints, digits. These patterns 

are similar to the spatial-temporal patterns of the agonist and antagonist muscle activities 

during single-joint movements as recorded by electromyography (EMG) in the literature 

(Hallett et al., 1975; Hallett and Marsden, 1979; Hannaford and Stark, 1985; Schmidt et 

al., 1988; Sherwood et al., 1988; Almeida et al., 1995; Gottlieb, 1998; Irlbacher et al., 

2006). Note that the summation of the two components is the predicted net joint torque 

presented in Fig. 2.3. 
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Fig. 2.8. An illustrative example of model's predictive potential: kinematics of one 

subject predicted by using the control parameters of another subject (solid line), in 

comparison with measured kinematics (dots). 

The muscle-tendon forces computed based on the model-predicted kinematics and 

kinetics (Fig. 2.9) had the peak flexor forces within the same order of magnitude as 

measured in vivo by previous studies (Dennerlein et al., 1999; Kursa et al., 2006; 

Nikanjarn et al., 2007). Both in vivo measurements and our prediction suggested that 

the peak forces of the FDP and FDS were less than ION during flexion for an index finger. 

Such an agreement to some extent supports the plausibility of the estimated muscle-

tendon forces. It should be recognized that the in vivo finger muscle-tendon force data 
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available in the literature were very limited and that the movements measured were not 

the same as though not fundamentally different from (e.g., no external force applied to 

the finger) the cylinder-grasp movements we studied in this work. In addition, the FDS 

force was larger than the FDP in the initial phase of the movement and then decreased to 

zero while the FDP force initially was small and then increased to sustain the motion. 

These observations appear to be in agreement with the literature data (Bendz, 1980; 

Nikanjarn et al., 2007). It was also observed that the combined extensor force was 

always greater than the combined flexor force, which confirms what was found by an in 

vivo study (Kuo et al., 2006). Besides the flexors and extensors, the intrinsic muscle 

forces also agreed with the muscle activities measured in vivo (Kuo et al., 2006). Both 

studies converged on the finding that the LUM should be almost silent during 

flexion/extension. 

Index Middle Ring Little 

F1:FDP 
F2:FDS 
F10:EDC 
F11:EDQ/EIP 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

o M 
OH 4 

CO J 

3 

I 

6r 

5 

4 

3 

6r 

5 

4 

3 

F7:LUM 
F8:RI 
F9:UI/ADQ 

~ 0.2 0~4~ 0.6~0~8 " 0.2 0".4" 0.6"0".8 " 0.2 0.4 0.6"0".8 v 0.2 0.4 0.6 0.8 

Fig. 2.9. The muscle-tendon force profiles based on the model-predicted kinematics and 

kinetics for the same representative case presented in Fig. 3 and Fig. 4. 
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2.4 Discussion 

The current study developed a two-stage computational framework for biodynamical 

modeling and illustrated it by an application to modeling of multi-fingered hand 

movements. It was demonstrated that the computational framework was able to address 

two chief concerns plaguing musculoskeletal biodynamical modeling: the realism-

efficiency trade-off and the irreconcilability of the inverse and forward solutions. The 

computational efficiency of our modeling framework was embodied by the significantly 

shortened time for complete integration of the state equations (<1 second) in forward 

simulation and reduced number of the integrations during control parameter identification 

(ranged from 10-500). Unlike most forward dynamic models with musculo-tendon 

components, this framework does not incur a computational demand that increases 

exponentially with the model variables (DOFs and muscle-tendon forces). Instead, the 

parameters of the stereotyped control scheme are identified in a static optimization 

process; once they are determined, the kinematics and musclertendon forces are predicted 

expeditiously. Further, the framework does not require estimation of any muscle 

activation pattern, which cannot be done reliably with the existing technology and has 

been acknowledged as a major drawback of the conventional forward dynamics 

approaches (Buchanan et al., 2005). 

Reconciliation between inverse and forward solutions was also achieved with the 

proposed framework. The irreconcilability of the inverse and forward solutions may 

have its root causes from both inverse and forward dynamics approaches. First, both 

inverse and forward solutions themselves could be susceptible to significant errors. 

When joint torques are estimated, inverse solutions are highly sensitive to a variety of 

factors such as measurement noise, accuracy of anatomical parameters, and veracity of a 

segment model (Desjardins et al., 1998; Kuo, 1998; Hatze, 2002; Silva and Ambrosio, 

2004; Alonso et al., 2007; Riemer et al., 2007). A forward approach could suffer from 

compromised validity of the biomechanical model (Zajac et al., 2002), and inaccuracy in 

model parameter estimation (Lim et al., 2003). These could result in non-physiological 

joint moments and muscle forces (Buchanan et al., 2005; Erdemir et al., 2007; Lee and 

Zhang, 2007), inaccurate ground reaction forces (Buczek et al., 2006), and unrealistic 

acceleration and power (Zajac et al., 2002). Second, even when inverse solutions are 
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derived free of model parameter estimation errors, they could still result in inverse 

dynamics simulation failures in practice due to numerical integration errors (Tashman, 

1992), mismatches between inverse and forward dynamics models (Zajac, 1993), or 

insufficient control signal dimensionality (Risher et al., 1997). 

The irreconcilable difference could lead to conflicts or debates in interpreting 

movement mechanism and impede comprehensive understanding of underlying 

mechanisms. It has been recognized that understanding of human movement demands 

integrative studies across disciplines, ranging from biomechanics, physiology, 

neuroscience to engineering, psychology, sport, medicine (Nishikawa et al., 2007; Stuart, 

2007). Both inverse and forward solutions have been widely utilized in these disciplines. 

Generally, inverse solutions are preferred by experimentalists and clinical practitioners in 

physiology, biomechanics, motor control, and neuroscience due to its low computational 

cost, while forward solutions are favored by computational scientists and theorists in 

these fields. Without a unified solution across different disciplines or fields, it would be 

a tremendous challenge to seamlessly integrate multidisciplinary knowledge for 

understanding human movement. It has been suggested that inverse solutions should be 

used when accurate experimental data and appropriate time-independent performance 

criteria are available for muscle force estimation (Anderson and Pandy, 2001b) or the aim 

is to predict how a change of one moment of force affects another moment of force and 

the movement (Often, 2003). Forward solutions should be used when the goal is to 

predict a novel movement (Anderson and Pandy, 2001b) or to investigate the effect of the 

body structure change on function and performance of a motor task (Pandy, 2001). Yet, 

these suggestions do not necessarily provide a solution to reconcile the difference. Our 

framework addressed this problem and generated a reconciled solution in a single 

musculoskeletal modeling framework. The proposed framework therefore could 

potentially serve as a unifying approach across disciplines and facilitate a more coherent 

understanding about how people move. 

Our modeling framework also displayed a great potential to predict across digits and 

subjects, although no systematic evaluation of the prediction power was done in the 

current study. When we randomly applied the control parameters from one digit to 

another, or from one subject to another, close matches were found between observed and 
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predicted kinetics and kinematics. This potential predictive power can be evidence 

supporting a common stereotypical control strategy, and is important for applications 

such as computer-aided design, ergonomics (Zhang and Chaffin, 2006), and surgical 

planning (Menegaldo et al., 2006). 

In addition, the proposed framework could facilitate inferring the internal models 

humans employ to coordinate the complex musculoskeletal system. Using traditional 

forward dynamics approach may not render insight into why the central nervous system 

is coordinating muscles the way it does (Zajac, 1993). A stiffness control mechanism 

based co-contraction of flexor and extensor muscles could be a way to simplify multi-

joint motion control (Darling et al., 1994). The observed resemblance in spatial-

temporal patterns between the EMG activities of the agonist and antagonist muscles 

during single-joint movements and the flexor and extensor torque components inspired 

the notion that our hypothesized control strategy could be a possible internal model at the 

motor control level. 

It is acknowledged that the proposed framework was only tested with 'well-

coordinated' cylinder-grasping motions. Whether it is applicable for other types of hand 

movement and other multi-segmental body movements remains unexplored. We expect 

that the distribution functions dictating the stereotyped movement control will have some 

dependence on the movement type. One of the advantages of the framework is that it 

has the open architecture allowing various control schemes or distribution functions to be 

hypothesized and empirically tested. 

2.5 Conclusion 

We proposed a novel modeling framework and demonstrated its ability to produce 

multi-fingered movement predictions that are realistic in both kinematics and kinetics. 

This is the first forward dynamic model we are aware of that can achieve such 

biomechanical realism at a relatively low computational cost. The model also provides 

a solution to alleviate the inverse dynamics failure problem that has been a persisting 

challenge in computational biomechanics. Our future work will focus on further 

improvement of this model, quantifying the correlations or invariants in the stereotyped 

patterns in joint torques, muscle/tendon forces both within and across individual digits, 
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and examining the effect of model parameter variability. 
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CHAPTER III 

IDENTIFYING MULTI-LEVEL INVARIANTS UNDERLYING MULTI-

FINGERED HAND MOTIONS VIA BIODYNAMIC MODELING 

3.1 Abstract 

This study explored whether common mechanisms are deployed to control 

functionally different multi-finger movements: cylinder-grasping and individuated 

flexion of the index finger ('enslaving'). A two-stage biodynamical computational 

framework was used to model the joint dynamics of the two types of multi-fingered 

movements (eleven trials for each type) and to estimate the muscle-tendon forces during 

these movements. The numbers of invariants or effective degrees of freedom in the 

joint and muscle-tendon dynamics of these movements were then identified using 

principal components analysis (PCA). The results showed that the two types of 

movement were faithfully reproduced by the same biodynamic model with a unified 

control mechanism and that the numbers of invariants remained consistent across 

movement types in both the joint and muscle-tendon dynamics. The grand means of the 

root-mean-square error (RMSE) values for grasping and 'enslaving' movements were 

2.25° and 1.24°, respectively. The identified numbers of invariants were about one in 

the joint dynamics and three in the muscle-tendon dynamics. The distributions of the 

percent variance accounted for (PAVF) across movements remained largely constant at 

the joint angle and muscle-tendon force levels. These results provided evidence to 

support the commonality of control mechanisms underlying different multi-finger 

movements, and hierarchical sources for dimensionality reduction in the control. 

Insights gained from the study can guide or inspire applications including the design of 

next-generation hand neuro-prosthetics and exoskeletons or hand rehabilitation strategies. 

3.2 Introduction 

The human hand provides superior dexterity with its 27 bones, 39 muscles, and over 

20 degrees of freedom (DOF's). How such a complex biomechanical system is 

orchestrated to produce a vast array of deft, purposeful, and concerted hand movements 

remains an open question that continues to perplex researchers. Much research effort 
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has been devoted to tackling this question and several mechanisms have been 

hypothesized from different perspectives. One mechanism is that the anatomy structure 

of the hand performs anatomical computation (Valero-Cuevas et al., 2007). It has been 

suggested that the hand anatomical structure itself is able to regulate muscle-tendon 

tensions, joint torques, and joint function across different joints through complex 

interacting between tendons during movement (Valero-Cuevas et al, 2007; Benjamin et 

al., 2008) while the whole tendon network acts like a single functional entity (Benjamin 

et al., 2008). Thus, the anatomical structure of the hand enables 'non-neural somatic 

logic' (Valero-Cuevas et al., 2007) and allows the hand to undergo information-

processing tasks spontaneously. This mechanism functions within fingers and can only 

partially alleviate the computational burden of the central nervous system (CNS). 

Another mechanism hypothesized from kinematic point of view is that the hand 

movements are produced by activating combinations of a small set of task-independent 

synergic hand motions or "kinematics synergies." This mechanism is supported by the 

observation that human exhibits highly coordinative kinematics within and across fingers 

(Cole and Abbs, 1987; Fish and Soechting, 1992; Soechting and Flanders, 1997; Hager-

Ross and Schieber, 2000; Mason et al., 2001; Santello et al., 2002; Braido and Zhang, 

2004; Li et al., 2004; Li, 2006; Thakur et al., 2008) during hand movements. It also has 

been evidenced by a phenomenon referred to as "enslaving:" the voluntary motion or 

force production of one digit is companied by unintentional motion or force production of 

other digits (Zatsiorsky et al., 1998; 2000; Braido and Zhang, 2004; Li et al., 2004). A 

recent study done by Ishida et al. (2007) has reported that a limited number of muscle 

synergies can explain most of the observed muscle activation patterns, implying a third 

mechanism that the motor system organizes the muscle elements into controllable units 

with different spatial-temporal patterns and generates actions or movements by activating 

combinations of these muscle synergies. All these observations suggested that all the 

joints and fingers are not completely independent but synergized as controllable units 

(Cole and Abbs, 1987) and thus the mechanical DOF's of the hand can be simplified into 

a much reduced number of functional DOF's (Li, 2006). 

Nevertheless, these past studies were conducted at discrete levels, examining either 

kinematics, or EMG-based muscle activation, or muscle-tendon forces. The findings are 

38 



www.manaraa.com

thus more or less disconnected and may also be contradictory on issues such as at which 

levels or to what extent at each level the control simplification or dimensionality 

reduction occurs. There has not been a well integrated study examining from multiple 

levels the synergies in production and control of multi-fingered hand movements. This 

may be attributable to the lack of a multi-finger biodynamic model that can connect 

musculotendon forces to joint torque and kinematics and do so without some of the long-

persisting limitations of dynamic simulation, including excessive computational cost 

(Anderson and Pandy, 2001; Menegaldo et al., 2003; 2006) and inverse dynamics 

simulation failure (Risher et al., 1997). The latter refers to the phenomenon that inverse 

dynamics solutions fail to reproduce measured kinematics via forward dynamics based on 

an identical model, thus casting doubt on the validity of the joint torques and muscle-

tendon forces derived. 

This study aimed to investigate the synergies or invariants underlying multi-fingered 

hand movements at multiple levels—the system control, joint and muscle-tendon 

dynamics. We employed a newly developed biodynamic model (Li and Zhang, 2008) 

that can overcome the above noted limitations. Our central hypothesis is that the 

mechanisms to control functionally different multi-finger movements remain consistent. 

We tested this hypothesis by examining (1) whether two functionally different multi-

finger hand movements, power grasp and individuated flexion of index finger 

('enslaving'), can be accurately reproduced by our biodynamic model with a unified 

control mechanism; and (2) whether the inter-digit dynamic couplings and coordination 

patterns underlying these multi-fingered movements are generally consistent. 

3.3 Methods 

Experimental Data 

The experimental data of both cylinder-grasping and individuated flexion of index 

finger ('enslaving') movements were from a database previously established in our 

laboratory (Braido and Zhang, 2004). During the cylinder-grasping movements, the 

subjects grasped a vertical cylindrical handle (45 mm in diameter) by voluntarily flexing 

digits 2-5 in a concurrent way while they only voluntarily flexed digit 2 without 

consciously controlling involuntary joint flexion of other digits during the individuated 
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flexion of index finger movements. Eleven trials performed by eleven subjects for each 

type of movement were selected using the selection criterion that the movements of the 

active finger must be 'well-coordinated', as characterized by bell-shaped joint velocity 

profiles and single- or double-peaked joint acceleration profiles. Trials satisfying this 

criterion without significant missing data (due to surface marker dropouts in 

measurement) were used. The multi-finger kinematics was measured and derived using 

a well-published experimental and processing protocol (Zhang et al., 2003; Lee and 

Zhang, 2005). 

Biodynamical Model 

A recently developed biodynamical computational framework (Li and Zhang, 2008) 

was used to model the two types of multi-fingered hand movements and elicit system 

control parameters, joint and muscule-tendon dynamics measures. This framework 

decoupled the conventional forward dynamic modeling process into two stages. In the 

first stage, each of digits 2-5 was represented as an open chain of three segments-distal 

phanlanx (DP), middle phanlanx (MP), and proxiamal phalanx (PP), connected by three 

1-DOF revolute joints—distal interphalangeal (DIP), proximal interphalangeal (PIP) and 

metacarpophalangeal (MCP) joints. The forward dynamics of the finger system was 

assumed to be driven by a physiologically based two-component ("agonist-antagonist") 

torque actuators. The torque at each joint of digits 2-5 was modeled as: 

< 0 = W ( 0 + ^tensor ( 0 ( 3 - 1 ) 

Tnexm(t) = -q(t)[K^OIA0(t) + KiXOIM(t)] (3.2) 

^ ^ t ) = -s(t)[K:x^A0(t) + Kd
eKteasoA0(t)] (3.3) 

q(t)= l.0-(l-0-aqt+—t2yaqt (3.4) 

S(t)= — £ 2 _ , A - i = _ ^ 2 ,A - i ( 3 5 ) 

B(A,1) f'tA-itf 
Jo 

where 7flexor(0 represents the flexor action and Textensor(0 represents the extensor 

action at time t;K^ore^\ K ^ e *3xI, and K^eX", K^asor <= *3xI are the 

associated proportional and derivative gains; A.0(t) e 9t3xl, A 0(0 e 9t3xl are the angle 

and angular velocity changes; q(t) is a gamma distribution function; s(t) is a beta 
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distribution function; aq is the scale factor of the gamma distribution, and /?s is the 

shape parameter of the beta distribution function. The system parameters were 

identified in an optimization-based procedure that best matched the model-prediction and 

measurement in both kinematics and joint torque dynamics of the multi-fingered 

movements. The procedure was able to overcome the inverse dynamics failure problem 

in forward dynamic simulation, and ensured that the inversely measurement-derived 

torque was faithfully reproduced by the model. 

In the second stage, the muscle-tendon forces were computed from the joint torques 

r{i) predicted in the first stage. Eleven tendons and muscles for each of digits 2-5 were 

considered in the model, including two 'virtual' muscles (the extensor indicis proprius 

(EIP) muscles for the middle and ringer fingers) which allowed a generic formulation for 

all the digits. The moment arms of the muscles and tendons of the index finger were 

estimated by the method proposed by Brook et al. (1995). The moment arms of the 

remaining fingers were scaled by the ratios of respective finger lengths to the index finger 

length. 

For each individual finger, the muscle-tendon forces were estimated by solving a 

nonlinear optimization problem with the objective function of minimizing the muscle 

stress. Here, the muscle stress was defined as the quotient of the muscle force divided 

by its physiological cross sectional area (PCSA) and the objective function was defined 

as: 

J = V(—S—)2 (3.7) 
r 'PCSA, 

where i is the index of the muscles. The PCSA values of the index finger were from 

Chao and An (1978). The other fingers were assumed to have the same PCSA values as 

the index finger. A sufficiently small but nonzero number was assigned to the PCSA 

values of the virtual muscles to ensure that the virtual muscles are 'silent.' 

Data Analysis 

The joint angles and muscle-tendon forces acquired through the two-stage 

biodynamical modeling process formed 12- and 44-dimension data sets, respectively, and 

served as the inputs of the subsequent data analyses. Principal component analysis 

(PCA) (Dunteman, 1989) was used to examine the synergistic behaviors and to quantify 
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the spatiotemporal characteristics across the two types of movements. 

The PCA is capable of discovering linear degrees of freedom underlying complex 

hand movements and checking whether and to what extent the high-dimensional hand 

movements can be reconstructed with low-dimensional data (less degree of freedom). 

The percent variance accounted for (PVAF) by the /th component, DFt (i = 1,..., k, where 

k is the total number of joints or the total number of musculo-tendon forces) can be 

computed as, 

PVAFi= ^rmi 1 0 o . (3.8) 
' Var{DFl) + ... + Var{DFk) 

i 

The residual variance RV{ was defined as 1 - ]T PVAFj , which is a monotonically 

decreasing function of i. The number of invariants or the functional degrees of freedom 

was then estimated by finding the i where a 'knee' (slope reduction point) (Daffertshofer 

et al., 2004) was observed in the linear-log plot of the RVi curve. All the preceding 

computations were implemented using MATLAB® programs (The Math Works, Boston, 

MA). 

An analysis of variance (ANOVA) was then conducted to examine the effects of 

movement type and subject on the PVAFj and the number of invariants using the General 

Linear Model procedure in SAS software program (SAS Institute, Cary, NC). 

3.4 Results 

Both grasping and 'enslaving' movements were closely reproduced in kinematics (Fig. 

3.1 and Fig. 3.2) and kinetics (Fig. 3.3) by the model. The root-mean-square error 

(RMSE) values for the pair-wise difference between the model-predicted and measured 

angular profiles for each joint ranged from 1.50° to 3.62° for grasping movements and 

from 0.58° to 2.95° for 'enslaving' movements (see Table 3.1). The grand means of the 

RMSE values for grasping and 'enslaving' movements were 2.25° and 1.24°, respectively. 

Based on the model-predicted kinematics and joint torque, the muscle-tendon forces were 

predicted (Fig. 3.4); the peak flexor forces were found to have the same order of 

magnitude as values reported in the literature (Dennerlein et al., 1999; Kursa et al., 2006; 

Nikanjarn et al., 2007). The results also indicate that all the joints during grasping 
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movements underwent significant movements whereas the DIP joint only presented 

minimal movements during 'enslaving' movements (Fig. 3.1). Further, it can be 

observed that the FDP dominated grasping movements while the FDS dominated 

'enslaving' movements (Fig. 3.4). 

Table 3.1 

Mean and standard deviation of the RMSE values for the pair-wise difference between 

the model-predicted and measured angular profiles for each joint for both grasping and 

'enslaving' movements (unit: °) 

Movement Joint 
Digit 

2 3 4 5 

grasping(n=ll) 

DIP 

PIP 

MCP 

2.82(1.05) 

1.92(1.26) 

1.50(0.47) 

3.62(0.67) 

2.09(0.89) 

1.68(0.64) 

3.36(1.02) 

2.06(0.97) 

1.72(0.62) 

2.86(1.23) 

1.71(0.93) 

1.61(0.88) 

enslaving (n=ll) 

DIP 

PIP 

MCP 

2.05(0.94) 

2.94(1.13) 

1.85(0.67) 

0.86(0.51) 

1.44(1.50) 

1.31(0.64) 

0.79(0.45) 

1.00(0.98) 

0.75(0.45) 

0.67(0.20) 

0.61(0.46) 

0.58(0.46) 

43 



www.manaraa.com

I 50 
< 

a 

Index Middle Ring Little 

0 

-500 03 r5(fc 0 3 

80, ,100, 

Time (Sec) 
•"""•• Experimental Mode-predicted 

Fig. 3.1 (a) model-predicted and measured joint angle profiles at 12 joints for grasping 
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Fig. 3.1 (b) model-predicted and measured joint angle profiles at 12 joints for 'enslaving' 

Fig. 3.1. A representative comparison of model-predicted (thick soild line) and measured 

(thin solid line) joint angle profiles at 12 joints for grasping (a) and 'enslaving' (b) 

movements. 
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Fig. 3.2 (a) Model-predicted and measured finger trajectories for grasping 
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Fig. 3.2 (b) Model-predicted and measured finger trajectories for 'enslaving' 

Fig. 3.2. Model-predicted (black thin line) and measured (grey thick line) finger 

trajectories in flexion-extension planes of digits 2-5 for grasping (a) and 'enslaving' (b) 

movements for the same representative case presented in Fig. 3.1. The three-segment 

linkage (black thick line) represents the initial finger posture with the origin being the 

MCP joint. 
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Fig. 3.3 (a) Model-predicted and inversely derived net joint torques for grasping 
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Fig. 3.3 (b) Model-predicted and inversely derived net joint torques for 'enslaving' 

Fig. 3.3. Model-predicted and inversely derived net joint torques. Fig. 3.3a and 3.3b 

depict the model-predicted (black thin line) and inversely (measurement) derived net 

joint torques (grey thick line) at 12 joints as functions of time t for grasping (a) and 

'enslaving' (b) movements for the same representative case presented in Fig. 1. 
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Fig. 3.4 (a) Muscle-tendon force profiles for grasping 
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Fig. 3.4 (b) Muscle-tendon force profiles for 'enslaving' 

Fig. 3.4. Muscle-tendon force profiles for grasping (a) and 'enslaving' (b) movements for 

the same representative case presented in Fig. 3.1. The FDP dominated grasping 

movements while the FDS dominated 'enslaving' movements. 

The two "agonist-antagonist" components of torque actuators displayed stereotypical 

spatial-temporal patterns that were consistent across multiple joints, multiple fingers, and 

two types of movement (Fig. 3.5). These patterns, more in the temporal than in the 

spatial aspect, seem to resemble the activation patterns of the agonist and antagonist 

muscles during single joint movements (Gottlieb, 1998; Marconi et al., 2006). 
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Fig. 3.5 (b) Torque components for 'enslaving' 

Fig. 3.5. The torque components for the movements presented in Fig. 3.1a and 3.1b, 

respectively. The spatial-temporal pattern of the flexor (black line) and extensor (grey 

line) torque components for both movements were similar to the "agonist-antagonist" 

muscle activation patterns observed in single-joint movements. Note that the 

summations of the two components are the predicted net joint torque presented in Fig. 

3.3a and 3.3b. 

Subjects exhibited more coordinative behaviors across fingers during grasping 

movements than 'enslaving' movements. The mean (±SD) of the average absolute 

values of correlation coefficients across subjects of joint angle and muscle/tendon forces 

were 0.96(±0.02) and 0.65(±0.25), respectively, for grasping movements and only 

0.48(±0.29) and 0.27(±0.22), for 'enslaving' movements. 

The numbers of invariants or the functional degrees of freedom in the joint and 
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muscle-tendon dynamics, as revealed by the PCA, varied minimally between the two 

movements (Table 3.2). The distributions of the PAVF for two movements were almost 

same at the joint angle and muscle-tendon force levels (Fig. 3.6). The ANOVA did not 

identify any significant effect of movement type or subject on the number of invariants 

and PVAF (by the three leading PC's) for the joint angle and muscle-tendon forces. The 

three leading principal components accounted for at least 94% of the variance. The 

mean (±standard deviation) of the total PVAF (by the three leading PC's) were 99.88% 

(±0.14%) and 98.79% (±1.44%) at the joint and muscle-tendon force level, respectively. 

Table 3.2 

Mean and standard deviation of the number of invariants in the joint angle and 

muscle-tendon force for both grasping and 'enslaving' movements 

Movement 

grasping(n=ll) 

enslaving (n=ll) 

Joint Angle 

1(0) 

1.09(0.30) 

Muscle-tendon 

Force 

3(1.61) 

3.09(1.45) 
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Fig. 3.6 (a) PVAF by each degree of freedom of joint angle 
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Fig. 3.6 (b) PVAF by each degree of freedom of muscle-tendon force 

Fig. 3.6. PVAF by each degree of freedom of joint angle (a) and muscle-tendon force (b) 

for grasping and 'enslaving' movements. 

3.5 Discussion 

The current study investigated whether the mechanisms to control functionally 

different multi-finger movements remain consistent at the system control, joint and 

muscle-tendon dynamics levels. At the system control level, there appears to be a 

uniform scheme to control the two movements. Both movements were faithfully 

reproduced by the same forward dynamics model embedded with a unified control 

scheme. In addition, the response of each controller in the model displayed a consistent 

stereotyped pattern across movements: the generated torque components exhibited 

similar and physiologically plausible characteristics. 
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At the joint and muscle-tendon dynamics levels, evidence also emerged to support the 

stated hypothesis. The PCA showed that the joint angles and muscle-tendon forces of 

the two movements could be reconstructed by the same numbers of invariants, which 

were much smaller than the number of mechanical degrees of freedom possessed by the 

multiple fingers. The results also showed that the PVAF (by the three leading PC's) of 

the two movements had the same distributions and the three leading PC's dominated the 

variance. 

A subtle difference in the role of the flexors was discerned in this study: the FDP 

served as the major flexor for cylinder-grasping, while the FDS served as the major flexor 

for 'enslaving' as the DIP joints exhibited minimal movements in the individuated 

flexions of the index finger. This difference seems to converge with the findings from 

neurophysiological studies (Butler et al., 2005; Mclsaac and Fuglevand, 2007) suggesting 

that human beings have greater capacity in selectively activating the FDS than activating 

the FDP. 

The observation that the movements actuated by different flexors had similar 

couplings and coordinative patterns may be a reflection of that the multi-fingered 

movements have hierarchical sources for dimensionality reduction. The multi-fingered 

movements are not only governed by the high level neuromotor synergies (Ishida et al., 

2007) but also regulated by the 'non-neural somatic logic' (Valero-Cuevas et al., 2007) 

facilitated by the hand anatomical structure. Both of them could be a source for 

dimensionality reduction. The observed dimensionality reduction in muscle-tendon 

dynamics supported the postulation that a small set of neuromotor synergies could create 

most muscle activities of the finger (Ishida et al., 2007). The 'non-neural somatic logic' 

provided by the tendon network could further reduce the effective degree of freedom of 

observable human behaviors by limiting the possible control signals (Valero-Cuevas et al., 

2007). These two sources for dimensionality reduction are cascaded in generating 

multi-fingered movements, as suggested by the findings that the number of invariants in 

the joint dynamics was smaller than that in the muscle-tendon dynamics and the mean 

correlation coefficient in the joint dynamics was larger than that in the muscle-tendon 

dynamics. When different flexors actuate the fingers through the same tendon network, 

the 'non-neural somatic logic' is activated and similar coupling and coordinative patterns 
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are generated. 

The present study illustrated the use of a new methodology for a multi-level study of 

the invariants or synergies as control simplification mechanisms underlying complex 

human movement. Previous studies conducted at single discrete levels focused on only 

one aspect of synergy or one source of dimensionality reduction, and might produce 

misleading findings on, for example, where the reduction occurred. This study 

proposed a method to allow the dynamics and control of human movement to be 

investigated at multiple yet interconnected levels. It afforded more integrative insights 

into dimensional reduction behaviors and a differentiation of the sources for the reduction. 

Further investigation of the underlying mechanism of each individual source can thus be 

made possible. 

The findings from this study can guide or inspire important applications. The study 

showed how different hyper-redundant multi-fingered movement acts can be controlled 

by a limited number of input commands. The knowledge gained could be applied to the 

design of the hand neuro-prosthetics and exoskeletons, which may be short of 

independent control sources or input commands (Weir, 2003). 

It is acknowledged that the biomechanical model we used is deterministic in nature 

and could introduce artifacts into the model-derived solutions, particularly the musculo-

tendon forces. The deterministic model relied on the assumption that the average values 

of musculoskeletal parameters represented the general population. The true inherent 

variability or relationship in muscle-tendon forces may thus be obscured. We expect 

that by taking into account the model parameter variability, more physically meaningful 

synergies can be identified in muscle-tendon dynamics. 
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CHAPTER IV 

A PROBABILISTIC DYNAMIC MODEL FOR FINGER TENDON FORCE 

ESTIMATION CLARIFIES THE ROLES OF THE FLEXORS 

4.1 Abstract 

Previous deterministic finger biomechanical models predicted that the flexor 

digitorum superficialis (FDS) was silent whereas the flexor digitorum profundus (FDP) 

was the only active flexor during finger flexions. Experimental studies in vivo, however, 

recorded activities of both flexors. In this study, in an attempt to elucidate the roles of 

the flexors, a probabilistic biodynamic model of the index finger was constructed to 

estimate the muscle-tendon forces during an experimentally measured index finger 

flexion movement. Two thousand instantiations were simulated using a Monte Carlo 

method, with four model parameters, including moment arms, physiological cross 

sectional areas (PCSA), passive torques, and anthropometric measures as independent 

random variables. The muscle-tendon forces at each time point were determined using a 

nonlinear optimization technique. The model predicted that both FDS and FDP 

contributed to sustaining the movement and the FDS was not necessarily silent. The 

two distinct force patterns observed in vivo in previous studies were also corroborated by 

the simulations. The findings, contrary to previous deterministic models' predictions 

but in agreement with experimental measurements, clarified the controversy surrounding 

the roles of the flexors in finger movement dynamics. 

4.2 Introduction 

Assessment of the finger muscle-tendon forces is critical for understanding the 

functional anatomy of the hand and for designing prostheses and rehabilitation protocols 

(Chao et al., 1976; An et al., 1985). Several biomechanical models (Buchner et al., 

1988; Brook et al., 1995; Sancho-Bru et al., 2001) have been proposed to estimate 

internal muscle-tendon forces of the fingers during hand movements. For example, 

Buchner et al. (1988) proposed a simplified planar dynamical finger model and estimated 

that the force of the flexor digitorum profundus (FDP) ranged from 2N to 6N during a 

hypothetical unloaded movement. Brook et al. (1995) reported that the estimated 

61 



www.manaraa.com

extensor digitorum force was less than ION in the free flexion motion and the FDP force 

was no more than 3N. A model proposed by Sancho-Bru et al. (2001) indicated much 

smaller tendon forces during a unloaded flexion/extension movement of the index finger; 

the estimated tendon forces were less than 4.5N and the FDP force ranged from ON to 

1.8N. All these models predicted no force in the flexor digitorum superficialis (FDS). 

While the past studies provided important insights into the mechanics and production 

of coordinated hand movements, one significant shortcoming was that the models they 

employed were all deterministic. Such models use average values of musculoskeletal 

parameters for a group or population of varied size, which introduces artifacts into 

muscle-tendon force estimates and obscures the true inherent variability or relationship in 

muscle-tendon forces. Another limitation of the past model-based studies was that they 

used simulated finger movements that initiated all joint motions concurrently, contrary to 

experimental observations (Somia et al., 1998). The inaccurate kinematic input to 

biodynamic models, even only in the temporal aspect, can compromise the validity of 

estimated time-dependent muscle-tendon forces and lead to equivocal understanding of 

the function of a muscle or tendon. 

Indeed, there have been inconsistencies between these model-predicted muscle-

tendon force patterns and flexor forces measured in vivo or the electromyography (EMG) 

patterns (Darling et al., 1994; Dennerlein et al, 1999; Kuo et al., 2006; Nikanjarn et al., 

2007). Dennerlein et al. (1999) showed that the FDS force ranged from ON to 4N before 

the fingertip touched the key during tapping. Kursa et al (2006) suggested both the FDS 

and FDP muscles were active during the index finger flexion. They reported that mean 

FDS tendon forces ranged from 1.3N to 8.5N respectively. Nikanjarn et al. (2007) 

reported that the FDS force ranged from -0.8N to 4.0N at 0 degree wrist flexion. These 

experimental observations about the FDS activities contradicted the predictions from 

previous models (e.g., An et al., 1979; An et al., 1983; Buchner et al., 1988; Brook et al., 

1995). The disparity suggested that the muscle-tendon force relationships in fingers 

might not be well described by deterministic models with simulated unrealistic kinematic 

input. These limitations have impeded further understanding of muscle-tendon force 

relationships during hand movements. 

Recent applications of stochastic methods in a few biomechanical modeling 
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endeavors (Mirka and Marras, 1993; Hughes and An, 1997; Chang et al., 2000; McLean 

et al., 2003; Davidson et al., 2004; McLean et al., 2004; Langenderfer et al., 2006) have 

demonstrated the power of stochastic methods in predicting the population behaviors. 

The success encouraged us to incorporate stochasticity to a biomechanical hand model 

and, by taking into account the variability of the finger muscle-tendon geometry, to seek a 

mechanistic clarification of the role of the flexors in index finger coordination. 

In the present study, we propose a probabilistic model for estimating the muscle-

tendon forces in the index finger during flexion. We incorporate stochasticity into 

musculoskeletal parameters of a biodynamical model, and use Monte-Carlo simulation 

method to capture the parameter variability. Our hypothesis was that accommodating 

variability of musculoskeletal parameters in the model would result in better population-

based predictions of the muscle-tendon forces, and specifically would clarify the roles of 

the flexors (FDP and FDS) in finger movement production and control. 

4.3 Methods 

Biomechanical Model 

The index finger is modeled as an open chain of three segments-distal phanlanx (DP), 

middle phanlanx (MP), and proxiamal phalanx (PP), connected by three 1-DOF revolute 

joints—distal interphalangeal (DIP), proximal interphalangeal (PIP) and 

metacarpophalangeal (MCP) joints. The segments are simplified as conical cylinders 

with a density of l.lg/cm3 (Dempster, 1955); the mass and moment of inertia of each 

segment are functions of the length and thickness of the segment. 

The three-segment dynamic system is actuated through an intricate network of 

extrinsic and intrinsic muscles (Brand and Hollister, 1999; Gonzalez et al., 2005). The 

extrinsic muscles include two flexors, the FDP and FDS, inserting at the bases of DP and 

MP, respectively, and two extensors, the extensor digitorum communis (EDC) and 

extensor indicis proprius (EIP), inserting on the dorsal side of the PP. The tendon of 

EDC trifurcates over PP into extensor slip (ES) and two lateral bands (LB and UB); the 

former inserts onto the MP while the latter two re-connect and merge into the terminal 

tensor (TE) inserting onto DP. The intrinsic muscles include the lumbrical (LUM) and 

interosseous muscle and form the extensor hood mechanism with the extensor tendons. 
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The LUM originates from the tendon of the FDP and inserts on the lateral bands of 

extensor. The interosseous muscles, radial or ulnar, originate from the lateral aspects of 

the MCP and insert on either side of the extensor hood. 

The dynamics of this index finger biomechanical system without considering the 

gravity at time t can be represented by the following equations of motion: 

M{9{t))6(t) = V(ff(t), 0(0) + r(t), (4.1) 

where 0{t) e SR3xl is the angle vector, M(0(t)) e 9?3x3 is a positive definite mass 

matrix, V(0(t), 6{t)) e 9?3xl represents the centrifugal (square of joint velocity) and 

Coriolis forces, r(t) e 9?3xl is the torque vector at the joints. Given a finger motion, 

6{t), the net joint torque at each joint r{t) can be calculated from Equation 4.1. 

This biomechanical system is subject to the moment equilibrium conditions, which 

can be described by the following equation when taking into account the passive torque: 

r = M-F + rpassive (4.2) 

where 

mn 0 mj3 

T = [T{ T2 T,f, F = [FlF1...Fj,M = 7W24 m 2 5 m26 
m3im3Sm39m3,lOm3,U 

rpassive ~ \_T\ T2 x l J > m jk *s moment arm of muscle/tendon force k with respect to 

joint j , T ive is the passive torque. It is assumed that the passive torque was effective 

only at the MCP joint and followed a third-order polynomial torque-angle relationship 

(Kamper et al., 2002). The passive torque was therefore expressed as: 

V ^ = [ 0 0 fl^+^+cfl, + rf] (4.3) 

where a, b, c, and d, are the coefficients of the polynomial. It is also assumed that 

no abduction-adduction occurs in the MCP joint during finger flexion-extension. 

Therefore, another moment equilibrium equation can be obtained: 

M 4 F = 0 (4.4) 

where M4=[m41 m42 0 0 0 0 /n47 w4g m4g w410 w4 n] and/W4kisthe 

moment arm of muscle-tendon force k with respect to the MCP joint for abduction and 
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adduction movements. 

Four force constraints reflecting the interconnected nature of multiple finger tendons 

are included in the model as suggested by Brook et al. (1995): 

F3=Z*BF6+ZVBF5 (4.5) 

FA={\-am)F9 + {\-aLUM)F1 + (\-2aLE)FlQ + K{eUB + eRB) (4.6) 

Fs=ocLE(Fl0
+Fn) + aLUMF7 -KeVB (4.7) 

Fe^LBi^o+FJ + ^uM^-Ke^ (4.8) 

where XRB zndZuB aiQ two cosine terms, which account for the convergence angles 

of theRB andUB onto theTE; f^and eUB account for the relative motion between the 

ES and the RB and UB, respectively. The a coefficients are additional unknowns, 

which are determined in the subsequent nonlinear optimization; K is the tendon elasticity 

coefficient. 

Given that the moment arm values in Mare known, the moment equilibrium system 

contains 11 unknown muscle/tendon forces and 3 unknown a coefficients in 8 equations. 

The muscle/tendon forces could be estimated by solving a nonlinear optimization 

problem with the objective function of minimizing the muscle stress. Here the muscle 

stress is defined as the quotient of the muscle force divided by its physiological cross 

sectional area (PCSA) and thus the objective function is expressed as: 

J = Z(-dlr)2 >A= {L 2> 7> 8> 9> n } (4-9) 

where i is the index of the muscles. 

Monte Carlo Simulation of Model Parameters 

Force predictions by the biomechanical model depend on model parameters including 

the moment arms, PCSAs, and passive torques. In previous deterministic models, 

parameters such as moment arms of extensors and PCSA values are assumed constant 

across subjects for the entire range of motion (Fig 4.1a); parameters such as moment 

arms of flexors and passive torques are assumed constant across subjects for a given 

posture (Fig 4. lb). The current model recognizes the variability in these parameters and 

models the parameters as random variables using Monte-Carlo methods (Fig 4.1c and 
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4. Id). 

Extensor Moment Arm 
PCSA 

Subject 

Flexor Moment Arm 
Passive Torque 

(a) 

Subject 

(b) 

Extensor Moment Arm 
PCSA 

Posture 

(c) 

Flexor Moment Arm 
Passive Torque 

Posture Posture 

Subject 

(d) 

Fig. 4.1. Uniform, posture-independent (a) and posture-dependent (b) distributions of 

musculoskeletal parameters most commonly used in conventional deterministic models; 

more realistic posture-independent (c) and posture-dependent (d) distributions in the 

proposed stochastic model. 

The first set of the random variables are the moment arms of the two flexors (FDS 

and FDP) and two extensor tendons (ES and TE). These moment arms are usually 

estimated using tendon excursion based models (An et al., 1983). The flexor tendon 

excursions at the DIP, PIP, and MCP joints can be estimated by the equation: 

( 017.^ 
E = 6d + 2y 1 — 

{ tan(0/2)J 

where d is the distance between long axis of the bone and the tendon, y is the distance 

from the joint center to sheath, 8 is the joint angle in radians, and E is the excursion. 

The extensor tendon excursions can be estimated as 

(4.10) 
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E = r9 (4.11) 

where r is the radius of the articular surface. The associated moment arms are 

dE 
derived by differentiating the excursion, that is, m = — . Therefore, the moment arms 

do 

of the extensor tendons are 

m = r (4.12) 

and the moment arms of the flexors are 

m = d + yg(a) (4.13) 

where g(0) is a function of 8. 

Unlike previous deterministic models in which the parameters r, d, andy were 

modeled as constants across subjects for a population, these parameters are modeled as 

independent random variables following a normal distribution in this study (2 parameters 

per joint for each flexor and 1 for each extensor tendons, 12 in total). The means of 

these parameters, jumr =[fiv...,iun) , are from Brook et al. (1995) and the variances are 

assumed to be 0.1//. 

Similarly, the PCSA values of the two flexors are modeled as random variables 

following normal distributions with the means from An et al (1983). In addition, the 

four coefficients of passive torque, a, b, c and d, also follow normal distributions with the 

means from Kamper et al. (2002). All the variances of the parameters are chosen to be 

one-tenth of their means. The variability of general anthropometry was also taken into 

account. The length and thickness of each segment are also modeled as the random 

variables with the mean and standard deviation derived were from a database previously 

established in our laboratory (Braido and Zhang, 2004). 

Implementation and Test 

Two thousand samples were generated for each of the random variables using the 

statistics toolbox in Matlab 7.5 (Mathworks, Natick, MA) and served as the input to the 

biomechanical model described in the preceding section. Note that parameters of other 

muscle-tendon units in this model were calculated based on the methods from Brook et al. 

(1995), which were constant across subjects or functions of the above described random 
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variables. 

The proposed probabilistic model was tested on an experimentally measured index 

finger movement, which was randomly taken from a pre-established database (Braido and 

Zhang, 2004). Identical joint kinematic data were used in all instantiations of the 

simulation (Fig. 4.2a), which allowed us to isolate the effects of the variability in 

musculoskeletal parameters in the investigation. 

'ob 

MCP 
PIP 

(a) 

x lO 

.xlO 

1 

Time (s) 

(b) 

Fig. 4.2. The measured index finger kinematics input (left) and the simulated torque 

profiles (right) with the time-varying mean (solid line) and ±1 standard deviation (the two 

dash-dot lines). The sequence of the joint movement is PIP-DIP/MCP. 
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4.4 Results 

The resulting torques at the three finger joints (Fig. 4.2b) had similar sinusoidal 

profiles, and the dispersion across the instantiations simulating anthropometric variability 

increased with the torque magnitudes. The model parameters generated by Monte Carlo 

simulations formed plausible population representations. The simulated moment arms 

followed the normal distributions at any given posture (Fig. 4.3) and the flexor moment 

arms exhibited multimodal or skew distributions through the entire movement (Fig. 4.4). 

The ranges of the simulated moment arms (Table 4.1) generally agreed with the 

experimental data (An et al., 1983). 

Table 4.1 

Simulated moment arms summarized over the entire movement (unit: mm) 

Joint 

DIP 

(N=2000) 

PIP 

(N=2000) 

MCP 

(N=2000) 

FDP 

3.04(0.29) 

7.05(1.12) 

10.56(1.32) 

FDS 

5.27(0.95) 

11.78(1.38) 

TE 

1.88(0.19) 

ES 

2.92(0.29) 
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0 5 10 15 0 5 10 15 

Moment arm (mm) 

Fig. 4.3. Histograms of the simulated moment arms of the flexors and extensor tendons 

at MCP, PIP and DIP joints for a given posture. The red lines are the fitted normal 

distributions. 
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Fig. 4.4. Histograms of the simulated moment arms of the flexors and extensor tendons 

at MCP, PIP and DIP joints through the entire movement. The moment arms of the 

FDP at the DIP exhibit a bi-modal distribution while the moment arms of the FDP at the 

MCP exhibit skewed distributions. 

The flexor forces (Fig. 4.5) predicted based on the simulated model parameters 

displayed a pattern that qualitatively agrees with what was recorded in a in-vivo study by 

Nikanjarn et al. (2007). The predicted FDP force declined in the initial phase of the 

movement (the first 0.4s) and then increased to sustain the motion and dominated the 

movement after the initial phase. The FDP force ranged from 0~4.72 N. The mean 

(±SD) of the maximum FDP was 1.22 (±0.97) N during the initial phases and 1.41 

(±0.60) N after. The FDS dominated the movement in the initial phase and decreased 

significantly before the FDP dominated the movement. The FDS force ranged from 

0-5.98 N. The mean (±SD) of the max FDS was 1.74(±0.93) N during the initial phase 

and 0.17(±0.29) N after. This FDS force-time pattern in the initial phase also agreed 
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with what was observed by Dennerlein et al. (1999). An inspection of the individual 

flexor force profiles also revealed that another type of force pattern reported by Nikanjarn 

et al. (2007) could be simulated. In those cases, the FDP dominated the entire 

movements and the FDS force was consistently smaller than FDP force. 

FDP FDS 

0.2 0.4 0.6 0.8 1 

Time 

Fig. 4.5. The predicted FDP and FDS force distributions during the movement: the 

time-varying mean (solid line) and ±1 standard deviation (between the two dash-dot 

lines). The vertical solid lines denote the time point before which the FDS dominated 

the movement and after which the FDP dominated the movement. The dashed line is 

the force profile predicted by a deterministic model. 

When the passive torque was not taken into consideration, the general patterns of the 

flexor forces did not change but the total flexor forces decreased. The range of FDP 

force reduced to 0-4.74 N. The mean (±SD) of the maximum FDP was 0.56 (±0.30) N 

during the initial phases and 1.48(±0.55) N when the FDP became the major flexor. The 

range of FDS force reduced to 0-4.03 N. The mean (±SD) of the maximum FDS was 

1.39(±0.4) N during the initial phase and 0.05(±0.03) N after. 

Both the FDP and FDS forces formed gamma distributions at a given time or posture 

(Fig 4.6). When the FDP dominated the movement, the FDS was no longer silent, in 
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contrary to the prediction by a deterministic model (Fig 4.5). The probability for FDS 

not being silent (FDS force >0. 01N) ranged from 36.4%~56.7% when the passive torque 

was taken into account, and 0.15%~2.8% when not. 

1400, 

1200 

1000 

a) 

0 0.5 1 1.5 2 2.5 

b) 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

c) d) 

Fig. 4.6. The FDP (with the passive torque (a) vs. without the passive torque (b)) and 

FDS (with the passive torque (c) vs. without the passive torque (d)) force distributions at 

a randomly selected posture when the FDP was the major flexor. The FDP exhibited 

gamma distributions. 

4.5 Discussion 

The current study developed a probabilistic model incorporating musculoskeletal 

parameter variability for estimating the time-dependent muscle-tendon forces in the index 

finger during flexion. The model was able to unveil and delineate the active, intricate 

roles of the FDP and FDS during finger flexion, which previous deterministic models 
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failed to show (Buchner et al., 1988; Brook et al., 1995; Sancho-Bru et al., 2001) but 

were indicated in experimental studies (Darling et al., 1994; Dennerlein et al., 1999; Kuo 

et al., 2006; Nikanjarn et al., 2007). Two experimentally observed distinct force 

patterns have also been corroborated by the simulations. These results clarified the 

controversy surrounding the roles of the flexors in finger movement dynamics and 

demonstrated the efficacy of probabilistic models in predicting more realistic muscle-

tendon forces for a population. 

There are several reasons why the FDS is not necessarily silent during finger flexion, 

all of which in fact were evidenced in the computational process of our work. First, 

since the FDS is the only flexor inserting onto the MP, it has to be activated when the PIP 

motion is initiated prior to the DIP and MCP motions. Second, the FDS must also exert 

force to balance the pass force generated in the ES which inserts onto the opposite 

(dorsal) aspect of the MP. Third, the FDS could be activated in order to reduce the total 

muscle stress. It was not mechanically advantageous to activate the movement by the 

FDP solely when the passive moments resisted the finger movement or when the PCSA 

value of the FDS was much greater than that of FDP. 

Compared to previous stochastic biomechanical modeling work (Hughes and An, 

1997; Langenderfer et al., 2006), this study featured a novel method to capture both the 

inter-person and movement-dependent variabilities of musculoskeletal parameter. It 

thus allowed the implementation of stochasticity in dynamical modeling. The previous 

models directly treated the moment arms as random variables and neglected the fact that 

the moment arms are both posture-dependent and subject-specific. Such an approach is 

only adequate in static biomechanical modeling and for studies of static tasks. 

This study also demonstrated the feasibility of using stochastic methods to explore the 

function of anatomical structures that are not well understood. Accuracies in both 

model topology and parameters are critical for understanding the function of the 

biomechanical systems with model-based approaches (Valero-Cuevas et al., 2007). Yet, 

creating a pool of the candidate topologies for modeling movement is difficult. For 

example, it was known that the joint stiffness was an important property at finger joints 

and the joint passive torque of the finger could be caused by a number of factors (Li et al., 

2006); however, little has been incorporated into the model topology in the previous 
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finger models (Buchner et al., 1988; Brook et al., 1995). In this study, the passive 

moment at MCP was modeled as a random variable, whose mean followed the 

experimentally established data (Kamper et al., 2002). In doing that, the model 

topology was probed by the Monte-Carlo simulations and the effect of passive torque on 

the muscle-tendon forces was examined. 

It is acknowledged that this study excluded variability of many other parameters, 

aspects, and the covariance between the parameters. Future endeavors will focus on 

expanding the parameter space to cover more variability, acquiring the covariance 

structures between parameters, and conducting more systematic experimental validation. 
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CHAPTER V 

SUMMARY AND RECOMMENDATIONS 

5.1 Overview 

The three coherent studies integrated in this dissertation center on the development of 

a minimum-input biodynamical model for multi-fingered hand movements. 

The key component of this dissertation is a two-stage computational framework for 

biodynamic modeling of human movement proposed in the first study, which addresses 

two major limitations that has been plaguing musculoskeletal biodynamical modeling: (1) 

the trade-off between model realism and computational efficiency, and (2) the 

irreconcilability of the inverse and forward solutions. This framework creates a 

benchmark for studying the multi-fingered hand movements from three levels, system 

control, joint and muscle-tendon dynamics, and enables the examination of a central 

claim of the second study that common mechanisms are deployed to control different 

multi-fingered movements. In the second study, we demonstrate that the two types of 

multi-fingered hand movements, cylinder-grasping and individuated flexion of the index 

finger ('enslaving'), could be predicted by the same forward dynamic model embedded 

with a common physiologically stereotyped control scheme. We also show that the 

predicted movements have consistent numbers of invariants in the joint and muscle-

tendon dynamics as well as consistent underlying dynamical couplings and coordination 

patterns. This study thus provides evidence to support the commonality of control 

mechanisms underlying different multi-finger movements. The third study is an 

exploratory study. It is an attempt to address the limitations of previous deterministic 

finger biomechanical models, in particular, their inability to predict experimentally 

measured flexor digitorum superficialis activities. A probabilistic biodynamic model is 

proposed to elucidate the roles of the flexors and clarifies the controversy surrounding the 

roles of the flexors in finger movement dynamics. Taken together, these three studies 

build a unique biomechanical science foundation for a minimum-input biodynamical 

model that identifies important applications, including design of next-generation hand 

prostheses or hand rehabilitation strategies, and advancement of digital human simulation 

and virtual reality technologies. 

This chapter summarizes the principal contributions made by this dissertation 
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research and provides recommendations for future work. 

5.2 Principal contributions 

1) Establishment of a physiologically based control scheme for controlling multi-

fingered hand movements 

A novel stereotyped control scheme is established for controlling multi-fingered 

movements (Chapter II). In this control scheme, the torque actuator of each joint has 

two components: one represents the flexor action and the other represents the extensor 

action. Both torque actuators are controlled by proportional-derivative (PD) controllers 

and modulated by distribution functions that emulate muscle contractile mechanics. 

This control scheme overcomes the difficulties in generating realistic kinetics in forward 

dynamics simulation. The hypothesized two-component torque actuator originates from 

the observation that the agonist and antagonist muscles exhibit different spatial-temporal 

patterns as recorded by electromyography (EMG) during single-joint movements 

(Gottlieb, 1998; Marconi et al., 2006). The responses of the controllers in applications 

of modeling multi-fingered movements display spatial-temporal patterns similar to the 

experimentally observed EMG patterns. 

2) Introduction of an open-structure modeling framework addressing two major 

limitations hindering the advancement of biodynamical modeling and applications 

A two-stage modeling framework (Chapter II) is proposed to address two major 

limitations plaguing musculoskeletal biodynamical modeling: the realism-efficiency 

trade-off and the irreconcilability of the inverse and forward solutions. This framework 

has an open architecture allowing various control schemes or distribution functions to be 

hypothesized and empirically tested. By incorporating the physiologically based control 

scheme described in Chapter II, it addresses the two limitations as demonstrated by an 

application of this framework to cylinder-grasping movement. The model achieves 

biomechanical realism at a relatively low computational cost. It faithfully reproduces 

the kinetics (joint torque), suggesting that it provides a solution to alleviate the inverse 

dynamics failure problem. 

3) Establishment of a method for studying human movement control and 

dynamic at multiple yet interconnected levels 
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A method is established to allow the dynamics and control of human movement to be 

investigated at multiple yet interconnected levels (Chapter III). This method uses the 

two-stage modeling framework to connect the information at three levels—the system 

control, joint and muscle-tendon dynamics. The analyses based on the information from 

multiple levels could provide integrative insights into dimensional reduction behaviors. 

4) Demonstration of common mechanisms to control functionally different multi-

fingered movements 

Although previous investigations have shown that all the joints and fingers of the 

hand are not completely independent, the findings from these investigations are 

contradictory on issues such as at which levels or to what extent at each level the control 

simplification or dimensionality reduction occurs. The current work (Chapter III) 

demonstrates that the mechanisms to control two types of multi-fingered movement, 

cylinder-grasping and individuated flexion of the index finger ('enslaving'), are generally 

consistent in the system control, joint and muscle-tendon dynamics. It also shows that 

these coordinative multi-fingered movements have multiple sources for dimensionality 

reduction in the control. Insights gained from the study can guide or inspire 

applications including the design of next-generation hand neuro-prosthetics and 

exoskeletons or hand rehabilitation strategies. 

5) Development and validation of a probabilistic finger biodynamical model 

A probabilistic biodynamic model is proposed to predict the population-based 

muscle-tendon forces in the index finger during flexion (Chapter IV). In this model, a 

novel approach is introduced to allow the implementation of stochasticity in dynamical 

modeling. Previous stochastic biomechanical modeling work (Hughes and An, 1997; 

Langenderfer et al., 2006) directly treated moment arms as random variables, which was 

not adequate for studies dynamic tasks. We model the parameters determining moment 

arms and passive torques as random variables and capture both the inter-person and 

movement-dependent variabilities of musculoskeletal parameter in a dynamic model. 

This is a unique methodological contribution to biodynamical modeling of the 

musculoskeletal systems. 

This probabilistic model is tested on an experimentally measured index finger 

movement. The predicted flexor force patterns qualitatively agree with what were 
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recorded in two in-vivo studies (Dennerlein et al., 1998; Nikanjarn et al., 2007), which 

gives support to the validity of this model. The findings also clarify the controversy 

surrounding the roles of the flexors in finger movement dynamics. 

5.3 Recommendations for future work 

The dissertation has indicated several research directions for future work. 

1) Examination of alternative distribution functions and control scheme for 

movement prediction 

The gamma and beta distribution functions proposed for simulating the initial torque 

profiles of agonist and antagonist and antagonist latency are chosen somewhat arbitrarily 

although they performed well in modeling the kinetics of the finger flexions. 

Plamondon and his colleague (Plamondon et al., 1993; Plamondon, 1995b; 1995a; 1998; 

Plamondon et al., 2003) proposed a kinematic theory for analyzing rapid human 

movements and proved that the impulse response of agonist or antagonist converges 

toward a lognormal function using the Central Limit Theorem. Their success inspires us 

to think whether there are some rationales behind the gamma and beta distribution 

functions and whether any other distributions could be used for substituting these 

distribution functions with solid physiological and theoretical bases. 

Therefore, a thorough search of alternative distribution functions will not only create 

a database of control scheme for movement prediction but also yield insights into 

underlying mechanisms of the generation and modulation of muscle torque during 

movement. 

2) Application of the proposed modeling framework to other types of hand 

movement and other multi-segmental body movements 

Although the proposed modeling framework has been only tested with two types of 

multi-finger movements (Chapter II&III), the modeling framework is expected to be 

applicable for other types of hand movement and other multi-segmental body movements 

since the proposed modeling framework has an open structure for allowing us to 

incorporate various control schemes or distribution functions. By applying the 

modeling framework to other movements, we will have an opportunity to examine 

whether human motor control strategies are joint-dependent. Moreover, if we 
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demonstrate that other multi-segmental body movements can be modeled by this 

modeling framework, we should be able to create a comprehensive model to simulate all 

the human movements efficiently. 

3) Development of a biodynamical model with a centralized control mechanism 

driving digits 2-5 simultaneously 

Although the multi-fingered movements are successfully predicted by the current 

forward dynamic model (Chapter II & III), the current model uses a decentralized control 

mechanism to drive the forward simulations. The four fingers are modeled as four 

uncorrelated three-segment biomechanical systems. Independent torque actuators are 

used to generate the net joint torques of the joints for each finger. The decentralized 

control mechanism has two drawbacks. First, a large set of parameters is requested to 

parameterize the control mechanism (6 parameters per joint). Second, the decentralized 

control mechanism cannot be able to predict the inter-digit coupling mechanisms since 

the fingers are modeled separately. We can develop a biodynamical model with a 

centralized control mechanism driving digits 2-5 simultaneously, The control 

parameters of all the torque actuator can be created from a small set of parameters 

through certain transformations given that the multi-fingered hand movement are highly 

synergic and the functional degree of freedom is much less than the mechanical degree of 

freedom. The biodynamical model only requires a minimum number of input 

commands. 

4) Refinement of the muscle-tendon biomechanical model by including ignored 

mechanisms 

The finger biomechanical model used to estimate the muscle-tendon force (Chapter II, 

III) is based on a conceptual model of finger anatomy (Valero-Cuevas et al., 2007). The 

model topology of the hand may be far away from reality in that the anatomical extensor 

mechanism may be over simplified (Valero-Cuevas et al., 2007; Lee et al., 2008). 

Therefore, a refined model is desired with these currently disregarded mechanisms or 

elements, such as crossover tendons, frictional forces, and soft tissues. We expect that 

consideration of such mechanisms will improve the accuracy of muscle-tendon force 

estimation. The enhancement of the accuracy model topology could significantly affect 

the current understanding of the roles of the muscle-tendon units in finger movement and 
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control and advance our understanding of the functions of each muscle-tendon units. 

5) Refinement of the developed probabilistic model to achieve better matches 

between model predictions and experiment observations 

Although the current work (Chapter IV) can predict flexor forces whose patterns 

qualitatively agreed with the experimental observations, a more comprehensive model is 

desired to further improve the predictive accuracy. Some of the musculoskeletal 

parameters of the current model are assumed constant and all the parameters are chosen 

to follow independent normal distributions, which may not accurately reflect the reality. 

The current probabilistic model can be improved in two steps. In the first step, the 

parameter space of the model can be expanded to cover more variability. Variability of 

all the muscle-tendon units including intrinsic muscles, the extensor digitorum communis 

(EDC) and extensor indicis proprius (EEP) can be taken into consideration. In the 

second step, the realistic distributions of these parameters and the covariance structures 

between parameters will be acquired and the musculoskeletal parameters will be modeled 

based on the acquired more realistic information. The complexity of the current 

probabilistic model will significantly increase. The refined model is expected to 

achieve better matches between model predictions and experiment observations. 

5.4 References 

Alexander, R.M., 2002. Tendon elasticity and muscle function. Comparative 
Biochemistry and Physiology 133, 1001-1011. 

Clewley, R.H., Guckenheimer, J.A., Valero-Cuevas, F.J., 2008. Estimating effective 
degrees of freedom in motor systems. IEEE Transactions on Biomedical Engineering 
55, 430-442. 

Dennerlein, J.T., Diao, E., Mote, CD., Rempel, D.M., 1998. Tensions of the flexor 
digitorum superficialis are higher than a current model predicts. Journal of 
Biomechanics 31, 295-301. 

Gentner, R., Classen, J., 2006. Modular organization of finger movements by the human 
central nervous system. Neuron 52, 731-742. 

Gottlieb, G.L., 1998. Muscle activation patterns during two types of voluntary single-joint 
movement. Journal of Neurophysiology 80, 1860-1867. 

Hughes, R.E., An, K.N., 1997. Monte Carlo simulation of a planar shoulder model. 

83 



www.manaraa.com

Medical & Biological Engineering & Computing 35, 544-548. 

Langenderfer, J.E., Carpenter, J.E., Johnson, M.E., An, K.N., Hughes, R.E., 2006. A 
probabilistic model of glenohumeral external rotation strength for healthy normals 
and rotator cuff tear cases. Annals of Biomedical Engineering 34, 465-476. 

Lee, S.W., Chen, H., Towles, J.D., Kamper, D.G, 2008. Estimation of the effective static 
moment arms of the tendons in the index finger extensor mechanism. Journal of 
Biomechanics 41, 1567-1573. 

Lee, S.W., Zhang, X., 2007. Biodynamic modeling, system identification, and variability 
of multi-finger movements. Journal of biomechanics 40, 3215-3222. 

Li, Z.M., 2006. Functional degrees of freedom. Motor Control 10, 301-310. 

Marconi, N.F., Almeida, G.L., Gottlieb, GL., 2006. Electromyographic and kinetic 
strategies to control movements. Revista Brasileira de Fisioterapia 10, 1-8. 

Nikanjarn, M., Kursa, K., Lehman, S., Lattanza, L., Diao, E., Rempel, D., 2007. Finger 
flexor motor control patterns during active flexion: An in vivo tendon force study. 
Human Movement Science 26, 1-10. 

Plamondon, R., 1995a. A kinematic theory of rapid human movements. Part I. Movement 
representation and generation. Biological Cybernetics 72,295-307. 

Plamondon, R., 1995b. A kinematic theory of rapid human movements. Part II. 
Movement time and control. Biological Cybernetics 72, 309-320. 

Plamondon, R., 1998. A kinematic theory of rapid human movements: Part III. Kinetic 
outcomes. Biological Cybernetics 78, 133-145. 

Plamondon, R., Alimi, A.M., Yergeau, P., Leclerc, F., 1993. Modelling velocity profiles of 
rapid movements: a comparative study. Biological Cybernetics 69,119-128. 

Plamondon, R., Feng, C, Woch, A., 2003. A kinematic theory of rapid human movement. 
Part IV: a formal mathematical proof and new insights. Biol Cybern 89, 126-138. 

Valero-Cuevas, F.J., Anand, V.V., Saxena, A., Lipson, H., 2007. Beyond parameter 
estimation: Extending biomechanical modeling by the explicit exploration of model 
topology. Ieee Transactions on Biomedical Engineering 54, 1951-1964. 

84 



www.manaraa.com

APPENDIX 
A.1 Algorithm and logic diagram for estimating the control parameters 
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Figure A.l. A logic diagram of the search routine for estimating the parameters of the 

controller structure for a measured movement. 

In Chapter I, we formulate an optimization problem to estimate the control 

parameters of the two-component torque actuator. This problem is essentially a 

simulation-based optimization problem (Kolda et al., 2003). It aims to find the time-

independent values of Klexor,K^sot, Kd
Bexm, K*xtensor, aq,and £ so that the system 

(Equations 2.1 -2.6) can replicate the given kinematics 0*(t) and measurement-derived 

torque r*(t). To solve this problem, the first step is to determine the initial onset time 

of the movement. When the two-component torque actuator is used to generate the 

torque that drives the multi-linkage system to produce the movement, the generated joint 

torque starts from zero and increases gradually. However, the measured movement may 

not have zero starting joint torque due to noise or measurement errors. The inconsistent 

starting joint torque may cause a failure in replicating the measured kinematics or 
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kinetics in forward simulation. In this study, the initial onset time of the movement is 

estimated by finding a time point in the initial phase of the movement (before the torque 

reaches its peak) at which the joint torque and its first derivative are close to zero. 

After determining the initial onset time of the movement, an iterative search routine is 

used to estimate these control parameters of the two-component torque actuator (Fig. A.l). 

Because of high dimensionality of the system model, the gradient and Hessian of the 

system are difficult to obtain or even to approximate, which may exclude the feasibility 

of using derivative-based methods in our study. We use the direct search (DS) (Torczon, 

1997) method to solve this problem, which is able to find optimal solution not by 

computing derivatives but by evaluating function values. The major advantage of the 

DS method is that it is not movement-dependent and is easy to implement. It can be 

further generalized to the highly nonlinear and non-smooth constrained problems and 

other difficult optimization problems. 

The method of implementing the DS follows a standard approach using the 

generalized pattern search (GPS) algorithm (Torczon, 1997) for bound constrained 

problems. The maximum iteration is selected to be 150. The parameter, Complete poll, 

is set to on, i.e. the algorithm polls all the mesh points at each iteration. The parameters, 

tolerance on mesh size (TolMesh), tolerance on function (TolFun), tolerance on variable 

(TolX), and tolerance on constraints (TolCon), are all set to be le-6. For all the trials, 

we use the same initial guess of control parameter, pre-determined by a trial-by-error 

process. The lower bounds of all the gains are selected to be le-6 and the upper bounds 

are 0.01. The lower bounds of aq, and fis are 1 and the upper bounds are 50. 

In each iteration, we compare the generated movement with the measured movement. 

This search process continues until the L2-norm of the RMSE values of all the angular 

profiles becomes less than the threshold value (4°) or the solution does not exhibit any 

improvement. Then we check the normalized mean-square difference between 

measured and model-predicted torque profiles. If the differences of the torque profiles 

are large than 10%, we adjust the onset time of the movement and re-run the direct search 

method until the solution does not exhibit any improvement. Otherwise, the entire 

search process terminates. 
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A.2 Pseudo code for control parameter estimation and forward simulation 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

% ParameterEstimationbyDS: Estimate the control parameters using the Direct Search 

% Input: 

% Anthropometric Variable: Segment Mass, Length and Inertia and Position of 

% Center of Mass 

% Measured Kinematics: Experimental Angle 

% Measured Derived Joint Torque: NeUointTorque 

% Output: 

% Controller gain: Kp_flexor, Kp_extensor, Kd_flexor, Kd_exensor. 

% Distribution function parameter: alphaq and betas 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

function [Kp_flexor, Kpextensor, Kd_flexor, Kd_exensor, alpha_q, 

beta_s]=ParameterEstimationbyDS (NetJointTorque, ExperimentalAngle, SegmentMass, 

Segmentlnertia, SegmentLength, CenterofMassPosition) 

Call GetlnitialParameter % Get the initial guess of the parameter 

Call SetupOptimizationOption % Set up the optimization parameters for the Direct 

Search Method 

Call DirectSearch % Use the Direct Search method to get the control 

parameter. 

Return Kp_flexor, Kpextensor, Kd_flexor, Kd_exensor, alpha_q, beta_s 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

% SetupOptimizationOption : Set up the optimization parameters for the DS method 

% Output: the optimization parameter 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

% Here we will directly create the optimization parameter using the function 

psoptimset % routine provided by Matlab. 

% The typical code is shown as follows 

% options 

= %psoptimset('PlotFcns',{@psplotbestf,@psplotfuncount,@psplotmeshsize,@psplotbest 

x%} , 'Maxlter',150, TolMeshUe^'TolConUe-e, TolX', le-6,TolFun*,le-6, 
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% 'CompletePoll', 'on', 'SearchMethod'.'GPSPositiveBasisNpl', 

'MeshAccelerator', %'On','Cache', 'On', 'MeshRotate', 'On'); 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

% DirectSearch: Estimate the control parameter using DS 

% Input: 

% Objective function: objfun: 

% Measured Kinematics: Experimental Angle 

% Measured Derived Joint Torque:NetJointTorque 

% Lower Bound: LBX 

% Upper Bound: UBX 

% Optimization Parameter: optimizationoptions 

% Initial parameter: xO 

% Output: 

% estimated control parameter: x 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

function [x]= DirectSearch ((@(x)objfun(x, ExperimentalAngle,NetJointTorque), xO, 

LBX,UBX,optimizationoptions) 

% Here we will directly apply the directresearch routine provided by Matlab to estimate 

the parameter 

% The typical code is shown as follows 

%[x] = patternsearch(@(x)objfun(x, ExperimentalAngle,NetJointTorque), 

%x0 ,[],[],[],[],LBX,UBX, optimizationoptions); 

Return x 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

% objfun: the objective function of the optimization problem 

% Input: 

% Control parameter: x, a set of parameters including Kpflexor, Kp_extensor, 

% Kd_flexor, Kd_exensor, alpha_q, beta_s 

% Measured Kinematics: ExperimentalAngle 

% Measured Derived Joint Torque: NetJointTorque 

% Output: 
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% RMSEvalue: the norm of the RMSE values of all the angular profiles. : 

% MSETorquevalue: the normalized mean-square difference between measured and 

% model-predicted torque profiles 

% = = = — — = = = = = = = = = = = = = = = = = = = = = = = = 

function [RMSEvalue, MSETorquevalue]= objfun(x, ExperimentalAngle, 

NetJointTorque) 

[SimulatedTorque, SimulatedAngle]=ForwardSimulation (Mass, Initial, Length, 

CenterofMassPosition, x); % generate a forward simulation with the given control 

parameter 

% Compare the movement and calculate the difference between simulated and 

measured % movement 

RMSEValue= Integral (ExperimentalAngle- SimulatedAngle)/Movement time 

MSETorquevalue = Integral (SimulatedTorque - NetJointTorque)/ Integral 

(NetJointTorque) 

% = = = = = = = = = = = = = _ _ = = = = _ = = = = „ = = 

% Forwardsimulation: forward simulation of hand movement 

% Input: 

% Anthropometric Variable: Segment Mass, Length and Inertia and Position of 

% Center of Mass 

% Controller gain: Kp_flexor, Kp_extensor, Kd_flexor, Kdexensor. 

% Distribution function parameter: alpha_q and betas 

% Target task: the joint angle theta_end and velocity theta_dot_end at the ending 

time 

% Output: 

% SimulatedAngle: the simulated kinematics. : 

% SimulatedTorque: the simulated joint torque 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

function [SimulatedTorque, SimulatedAngle]= ForwardSimulation (SegmentMass, 

Segmentlnertia, SegmentLength, CenterofMassPosition, x, thetaend, thetadotend); 

OdeOptions = odeset( 'RelTol',le-3, 'AbsTol', le-3, 'MaxStep', 1/120.0 ); %optimization 

parameter 
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Time =0; % initial time 

StopSimulation = 0; 

StateDerivatives(Time,statevariables,0); 

CurrentStatus=[]; % the current status 

while 1, 

if( T_end>=0 & Time+0.1*l/120.0>=T_end ) StopSimulation = -1; end 

if(StopSimulation <= 0.01 ), 

CurrentStatus (i,:)=[ statevariables Tl T2 T3]; 

if(StopSimulation === -1) break; end 

StopSimulation = 1; 

end 

[TimeArray,StatevariableArray] = ode45(@StateDerivatives, [Time T+l/120.0], 

statevariables, OdeOptions ); 

T = TimeArray(length(size(TimeArray,l));; 

statevariables = StatevariableArray ( size(StatevariableArray ,1),: ); 

StopSimulation = StopSimulation - 1 ; 

end 

SimulatedAngle = CurrentStatus (1:3); 

SimulatedTorque= CurrentStatus (7:9); 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

% StateDerivatives: Calculates the derivatives of the states 

% Input: 

% The current state variables: statevariables 

% Output: 

% The state variables after one step: state. : 

o / o = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

function state = StateDerivatives(Time, statevariables) 

% Here we will solve the following equations of motion and compute the state variables 

after one step based on the current state variables. 

% M(0(t))0(t) = V(0(f), 9\t)) + t{t) 

Return state 

90 



www.manaraa.com

A.3 References 

Kolda, T.G., Lewis, R.M., Torczon, V., 2003. Optimization by direct search: New 

perspectives on some classical and modern methods. Siam Review 45, 385-482. 

Torczon, V., 1997. On the convergence of pattern search algorithms. Siam Journal on 

Optimization 7, 1-25. 

91 



www.manaraa.com

AUTHOR'S BIOGRAPHY 

Kang Li was born on November 16, 1976 in Zhijiang, a small town in Hunan, China. 

He graduated from Tsinghua University in 1999 with a Bachelor of Science degree in 

Mechanical Engineering. In 2003, he went to Mississippi State, Mississippi, to pursue 

graduate study in Industrial Engineering. He completed a Master of Science in 

Industrial Engineering from Mississippi State University in December 2004. 

In the fall of 2004, Kang relocated to Champaign, Illinois and enrolled in the 

Mechanical and Industrial Engineering at the University of Illinois at Urbana-Champaign, 

beginning his doctoral studies in the Ergonomics and Biomechanics fields under the 

guidance of Professor Xudong Zhang. Since Fall 2007, he has been a visiting student at 

the Orthopedic Research laboratories of the University of Pittsburgh. He has published 

two journal articles and completed five manuscripts that are currently in review. He has 

also presented at national and international conferences including the North American 

Congress on Biomechanics and the First International Conference on Digital Human 

Modeling where he chaired a session. Following the completion of his Ph.D., Kang 

plans to be a postdoctoral research associate at the University of Pittsburgh. 

92 


